
Fluorescence-assisted image analysis of freshwater microalgae

Ross F. Walker *, Kanako Ishikawa, Michio Kumagai

Lake Biwa Research Institute, 1-10 Uchidehama, Otsu, Shiga 520-0806, Japan

Received 15 August 2001; received in revised form 18 March 2002; accepted 19 March 2002

Abstract

We exploit a property of microalgae—that of their ability to autofluoresce when exposed to epifluorescence illumination—to

tackle the problem of detecting and analysing microalgae in sediment samples containing complex scenes. We have added

fluorescence excitation to the hardware portion of our microalgae image processing system. We quantitatively measured 120

characteristics of each object detected through fluorescence excitation, and used an optimized subset of these characteristics for

later automated analysis and species classification. All specimens used for training and testing our system came from natural

populations found in Lake Biwa, Japan. Without the use of fluorescence excitation, automated analysis of images containing

algae specimens in sediment is near impossible. We also used fluorescence imaging to target microalgae in water samples

containing large numbers of obtrusive nontargeted objects, which would otherwise slow processing speed and decrease species

analysis and classification accuracy. Object drift problems associated with the necessity to use both a fluorescence and greyscale

image of each microscope scene were solved using techniques such as template matching and a novel form of automated seeded

region growing (SRG). Our system proved to be not only user-friendly, but also highly accurate in classifying two major genera

of microalgae found in Lake Biwa—the cyanobacteria Anabaena spp. and Microcystis spp. Classification accuracy was

measured to be over 97%.
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1. Introduction

The analysis of microalgae in sediment samples

presents the phycologist with several challenges, one

being the difficulty in locating specimens among the

very ‘busy’ microscope scenes. For the same reason,

implementing an automated image processing system

as a tool for sediment analysis presents the image

analyst with a similar problem—how can an image of

such a complex sediment scene (see Fig. 1a) be

successfully segmented (separated into regions) and

labelled as ‘‘microalgae’’ or ‘‘other’’ parts?

While image analysis has been used as a tool for

microalgae analysis for over two decades, its applica-

tion to detecting and analysing microalgae in sediment

samples had yet to be conducted. This is because the

complex scenes presented by sediment samples can-

not be easily analysed using high-resolution greyscale

imaging and conventional light microscopy. The main

0167-7012/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0167 -7012 (02 )00057 -X

* Corresponding author. Tel.: +81-77-526-4690; fax: +81-77-

526-4803.

E-mail addresses: walker@lbri.go.jp (R.F. Walker),

ishikawa@lbri.go.jp (K. Ishikawa),

kumagai@lbri.go.jp (M. Kumagai).

URL: http://www.members.tripod.com/~Dr_Ross_F_Walker.

www.elsevier.com/locate/jmicmeth

Journal of Microbiological Methods 51 (2002) 149–162



difficulty is the inability to locate and accurately

segment microalgae image objects while they are

surrounded (or even occluded) by sediment and detri-

tus—a result of the microalgae and sediment having

similar greyscale intensities.

A solution to this problem can be found in a

characteristic possessed by microalgae—that of their

ability to fluoresce when exposed to light of specific

frequencies (Glazer, 1987; Mur et al., 1999; Whitton,

2000; Herman, 1998; Sharma and Schulman, 1999).

The following work details an automated image

analysis system that exploits this property. We have

developed a fluorescence-assisted image processing

and classification system for analysing microalgae

specimens in ‘‘busy’’ images. By ‘‘busy’’, we mean

images that contain many nontargeted objects (dirt,

zooplankton, other water-born debris, etc.) that are

normally difficult or impossible to process using

conventional greyscale image processing. Because of

the autofluorescence properties of microalgae, it is

possible to automatically locate and analyse them

without processing all other objects in the image.

As can be seen in Fig. 1, using fluorescence can be

a very successful technique for analysing microalgae

colonies and other autofluorescing structures hidden

in sediment samples. Fluorescence excitation clearly

shows the locations of any microalgae objects within

the sediment, allowing accurate location and subse-

quent segmentation (separation of the object from its

surrounding background). We have implemented flu-

orescence excitation in the hardware portion of our

phycological image processing system (see Walker

and Kumagai, 2000). Without the use of fluorescence

excitation, automated analysis of phycological images

would be near impossible.

As well as sediment analysis, we have also used

fluorescence excitation and image processing to aid in

the automated detection, analysis, and species classi-

fication of microalgae in water samples. Such samples

often contain a large diversity of water-born organ-

isms, such as detritus, sediment, zooplankton, as well

as microalgae. When targeting a specific microalgae

species for analysis using conventional bright-field

microscopy, these other nontargeted objects can both

slow down analysis and increase analysis errors. This

is because the analysis system does not know a priori

which objects are microalgae, thus all objects must be

processed. By using fluorescence to assist our analysis

and classification of microalgae, we can reduce the

number of image objects that need to be processed,

simply by targeting only the objects that fluoresce.

Moreover, for images that contain no microalgae

objects, no processing is required because no auto-

fluorescence occurs. This can result in a considerable

reduction in processed data, effectively improving the

speed of our analysis system. Furthermore, the num-

ber of species requiring classification is now signifi-

cantly reduced, allowing a simplified classifier design

and corresponding decrease in system classification

error rate.

2. Problems with fluorescence-assisted image

analysis

Using fluorescence to aid the automated analysis of

microalgae presents the researcher with several chal-

lenges, mainly due to technological limitations in

currently available hardware:

1. A fluorescence image (an image of fluorescing

objects, as shown in Fig. 1b) often contains little

useable analytic information for species identifica-

tion, necessitating also the use of a greyscale

image;

2. A greyscale image (an image of nonfluorescing

objects) captured by a fluorescence camera has low

spatial resolution;

3. Both fluorescence and greyscale images cannot be

captured simultaneously.

(1) Firstly, the fluorescence image itself contains

little useable analytical information for species iden-

tification. Fluorescence images tend to have low

photometric resolution (low contrast) as well as low

spatial resolution caused by limitations of the fluo-

rescence camera (explained below). Adding to the

problem is the fact that a fluorescing object acts as a

mass of omnidirectional point sources of light, result-

ing in a blurring effect when imaged by a microscope,

which generally requires parallel light for optimal

image resolution. To overcome this limitation, a grey-

scale image of the same scene is necessary if accurate

object classification is required. The fluorescence

image is used to locate only fluorescing objects

(microalgae) in the greyscale image, by segmenting
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those areas of the greyscale image that have corre-

sponding fluorescing parts.

(2) Unfortunately, using a fluorescence camera to

take a greyscale image does not completely solve the

spatial resolution problem—see Fig. 2. A fluorescence

camera is optimised for high photometric sensitivity to

facilitate low-light imaging, and for this reason, spatial

resolution suffers. Using a greyscale image captured by

a fluorescence camera allows classification to about the

genus level—species-level classification accuracy for

visually similar species such asMicrocystis aeruginosa

and M. wesenbergii would be quite poor. If accurate

Fig. 1. Image of Lake Biwa sediment, containing almost completely obscured microalgae specimens (a); corresponding fluorescence image (b).

Scale bar = 100 Am.

Fig. 3. Image processing system block for fluorescence-assisted microalgae detection and analysis. Note that feature selection is only undertaken

during the training phase of the sytem.
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species-level classification is required, it is thus neces-

sary to capture both fluorescence and high-resolution

greyscale image of each scene using separate cameras.

Such a dual-camera system is currently unavailable, so

we will limit our discussion to the case of using

fluorescence and greyscale images captured by a single

fluorescence camera for genus-level classification.

(3) Simultaneous capture of both fluorescence and

greyscale images is difficult, if not impossible, using

current microscope technology, especially when using

a single fluorescence camera. A delay of several

seconds occurs between the capture of the two images.

During this time, specimens within a water sample can

move, resulting in a registration mismatch between the

fluorescing object and its corresponding greyscale

counterpart (see Fig. 4). The type and amount of

movement is different for each image object, making

a solution to this registration problem difficult.

Autofluorescence signals from nonmicroalgal sour-

ces such as detritus and litter cannot be avoided and as

a result can increase the complexity of the scenes to be

processed. However, such objects generally do not

pose a significant detriment to system performance

because they can be detected as non-algal bodies via

their morphometric and textural properties during the

pattern recognition and classification process.

In the subsequent section, we will introduce the

hardware and software technology used in our fluo-

rescence-assisted image analysis system, and present a

solution methodology for the problem of multi-com-

ponent registration mismatch discussed previously.

Finally, we will evaluate our system’s performance

when applied to two types of analysis:

1. Analysis of sediment samples—locating, segment-

ing, and measuring statistical properties of micro-

algae contained in sediment samples from Lake

Biwa;

2. Analysis of water samples—locating, segmenting,

measuring statistical properties, and genus-level

classification of microalgae suspended in water

samples from Lake Biwa.

3. Methods

3.1. Specimen collection and treatment

Samples were obtained from August to September

1999 from the Kitayamada fishery port in the South

Basin of Lake Biwa (35j1V26WN, 135j55V5WE)—a

shallow eutrophic area of the lake (ca. 2.5 m depth).

Toxic cyanobacterial blooms regularly occur there in

the summer months (Shiga Prefectural Government,

2000). Sediment core samples were taken using an

undisturbed core sampler (HR Rigo) and stored in a

refrigerator (4j). Subsamples (1 ml) from the top

surface layer (0–2 cm) were diluted with 50 ml water.

Fig. 2. Magnified view of greyscale image tile of a small Microcystis specimen captured by a fluorescence camera (left), and the same specimen

captured by a high-resolution greyscale camera (right). Notice the greater spatial resolution of the greyscale camera, allowing individual colony

cells to be discerned. The lower resolution fluorescence image displays a typical ‘blurred’ or ‘smoothed’ photometric response. Note: both

greyscale scenes shown in this figure are small 85� 85 Am sub-images of the microscope’s much larger 2.2� 1.8 mm field of view.
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Water samples were taken from the lake water surface

using a sampling bucket and immediately brought

back to the laboratory. Sediment solution and water

samples (1 ml) were poured onto an Utermöhl sed-

imentation chamber to take pairs of fluorescence and

greyscale digital images.

3.2. System hardware

The complete system can be broken down into two

main functional components:

� Epifluorescence and bright-field imaging system

for sediment and water analysis, and
� Image processing and database system.

The imaging system consists of a digital colour

CCD camera for fluorescence use (Hamamatsu

C4742-95-12SC) mounted on an inverted epifluores-

cence microscope (Olympus IX70) fitted with filters

for Chlorophyll fluorescence observation—Olympus

WIG cube (exciter filter [band-pass]: BP520–550,

dichroic mirror: DM565, barrier filter [low-pass]:

BA580IF). Both fluorescence and greyscale images

were taken of each sediment or water scene by

TWAIN-compatible capture software running on a

high-speed personal computer. Images had a spatial

domain of 1280� 1024 pixels at a spatial resolution

of approximately 1.7 Am/pixel when using a 4�
microscope objective lens. Each fluorescence/grey-

scale image pair was stored on hard disk in a micro-

algae database (see Fig. 3). Statistical characteristics

(morphometric, texture, frequency domain parame-

ters) of each microalgae object were quantitatively

measured and used to determine taxonometric classi-

fication. To provide a robust test of our system, we

used species of cyanobacteria, which are readily

available in the eutrophic areas of Lake Biwa’s south

basin. Sediment and water samples were collected and

processed during the summer bloom period of August

to October 1999. The fluorescence image database

contained over 600 microalgae objects whose taxon-

omy has been individually determined by a phycolo-

gist. The database currently comprises predominantly

of five species of cyanobacteria—M. aeruginosa, M.

wesenbergii, Anabaena smithii, A. ucrainica, and

Aphanizomenon flos-aquae. The analysis and classi-

fication of microalgae samples is totally automated

except for fluorescence/greyscale switching of the

microscope and camera, which is done manually until

automated switching technology becomes available.

4. Image processing methodology

Fig. 3 details the architectural layout of the image

processing system used for microalgae detection and

analysis. In the following sections, we will discuss the

functionality of each processing block, especially those

related to fluorescence imaging. We refer the reader to

Walker and Kumagai (2000) for a more detailed dis-

cussion of our image processing techniques.

4.1. Image preprocessing—nonuniform illumination

correction

Digital greyscale images received for analysis are

preprocessed to reduce the effects of nonuniform

illumination. Such an undesirable characteristic,

which represents a nonlinear transformation of the

true image intensity data, can present a severe chal-

lenge to subsequent image processing algorithms such

as segmentation. In the present system, the micro-

scope’s illumination transfer function is measured and

used to correct the greyscale images. Illumination

correction is not required for the fluorescence images.

4.2. Image segmentation

Objects within each image are separated from the

image background via the process called segmenta-

tion. By object, we mean any body (group of image

pixels) that appears darker than the image back-

ground. This usually can include dirt, non-alga spe-

cies, detritus, etc., as well as microalgae. However,

using fluorescence allows the system to avoid seg-

menting such non-algae objects. We achieved seg-

mentation by processing both a fluorescence and a

greyscale image of the same scene. A binary segmen-

tation ‘mask’ is first formed from the fluorescence

image. This mask contains transparent and nontrans-

parent areas, corresponding to phycological and non-

phycological objects, respectively. The mask is then

overlayed on the original greyscale image, effectively

using it as a ‘window’ into the greyscale image. Areas

of the greyscale image that show through the mask
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(the phycological objects) are then removed from the

greyscale image and processed. Because both the

fluorescence and greyscale images are of the same

microscope field, there should be a one-to-one corre-

spondence between each of the mask’s ‘windows’ and

the microalgae objects in the greyscale image.

Initially, a rough mask is formed by a simple

thresholding of the fluorescence image at an intensity

level automatically determined by its intensity statis-

tics. This mask is then further processed to remove

small imaging ‘noise’ particles or other objects

smaller in size than the minimum expected size of

the targeted microalgae species. Finally, mask edge

pixels are smoothed to form more uniform object

boundaries. These steps are performed via a series

of morphological image processing algorithms based

on mathematical morphology (Serra, 1982; Vincent

and Beucher, 1989).

4.3. Image registration solution methodology for

water sample analysis

Phycological objects that are suspended in water

can change their spatial position and orientation over

time due to some inbuilt ability, gravity, or water

currents formed via heating of the water sample by the

microscope’s light source. For similar reasons, it is

also possible for the shape of objects to change

(deform). This is particularly true when water currents

act on fragile microalgae such as the Anabaena genus.

As mentioned previously, these temporal changes

occurring in the microscope’s field-of-view can have

a detrimental impact on the segmentation accuracy of

the system, because it is impossible to simultaneously

capture both fluorescence and greyscale images of the

same microscope scene, using currently available

microscope and imaging technology.

Although such spatial translation and deformation

are generally of limited magnitude over the time

required to capture both fluorescence and greyscale

images, it is nevertheless necessary to correct such

changes if accurate segmentation of image objects is

necessary.

Fig. 4 shows two examples of gross segmentation

mask misregistration—a result of such microalgae

movement during the delay between capturing the

fluorescence and greyscale images. This movement

can be modelled as a process involving the following

three local image spatial transformations:

� Translation—movement of the object in the spatial

(x and/or y axis) domain;
� Rotation—rotation of the object around its centre

of gravity;
� Deformation—changes to the physical shape of the

object.

We investigated possible solutions to the problem of

fluorescence/greyscale image misregistration caused

by these multi-component spatial transformations.

One method of correcting spatial translation is by a

process called ‘template matching’ (Gonzalez and

Woods, 1993) using the ‘cross-correlation’ function

(Castleman, 1996). Template matching, however, is

Fig. 4. Image registration problem as a result of specimen movement. Here, we show two examples of the binary fluorescence mask image being

overlayed on the greyscale image at the original location of the specimen. Because of specimen movement, partial segmentation mismatch (a) or

even complete segmentation mismatch (b) can occur. Note: both fluorescence mask and greyscale scenes shown in this figure are sub-images of

the microscope’s much larger field of view. Scale bar = 20 Am.
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most effective for pure translations—it cannot solve

the problems of rotation and deformation, thus any

rotational or deformational effects will remain. It is

possible to combine an iterative process of both cross-

correlation and fluorescence mask rotation to solve

the problem of translation and rotation. However, this

approach is far too slow (i.e. computationally taxing)

due to the large number of possible rotations involved.

Also, this combination cannot provide a solution to

object deformation.

We felt that an alternative technique called Region-

based segmentation, in combination with template

matching, could provide an adequate solution to all

three spatial transformations. Region-based segmen-

tation techniques (Young, 1994), including ‘region

growing’, assume image components are spatially

coherent or homogeneous, and separated by sharp

boundary discontinuities. For microalgae species,

changes in shape (deformation) alone will not result

in large spatial coherence changes (changes to the

internal structure of the specimen). It should therefore

be possible to use correlation techniques to determine

the translational component of an object’s spatial

movement, and then use (say) seeded region growing

(Adams and Bischof, 1994) to solve the problem of

rotation and deformation. The centre of the template-

matched fluorescence object mask can be used as a

‘seed’ to mark a point internal to the greyscale object

to be segmented. Region growing would then be used

to grow this seed within the greyscale image object,

based on homogeneity criteria. Following successful

segmentation, characteristics such as object size,

shape, texture, etc., can be automatically measured

and statistically analysed. Using statistical pattern

analysis (Fukunaga, 1990; Hand, 1981), the genus

or species membership of the object is determined.

The resulting system would then provide fully auto-

mated microalgae species classification of highly

complex water and sediment samples. We imple-

mented both template matching and region growing

techniques within our segmentation algorithm. In the

following paragraphs, we describe the algorithm

implementation and the result of their use in our

fluorescence-excitation microalgae image analyser.

4.3.1. Template matching

For each object in the fluorescence binary image

mask, we extract a small image tile just large enough

to contain the entire spatial domain of the object. We

then template-match this tile to the greyscale image by

sliding the tile over the greyscale image, and applying

the cross-correlation operator:

Cðr; cÞ ¼
X
x;y

Iðr þ x; cþ yÞSðx; yÞ ð1Þ

where I represents the greyscale image, S represents

the fluorescence image segmentation mask tile of the

object to be segmented, and C(r,c) is the cross-

correlation product at spatial displacement (r,c). At

each tile position, a local cross-correlation between

the segmentation tile and greyscale image neighbour-

hood was performed. The cross-correlation value at

image tile displacement r,c (Eq. (1)) equals the

summation of the point-by-point product of the binary

fluorescence mask tile and greyscale image intensities

across the domain of the tile. Because an image object

is darker than the surrounding background, the tile

position with the minimum cross-correlation product

represents the location of the translated object in the

greyscale image.

To increase the speed of the algorithm, the domain

of the slide area was limited to an area 50 pixels

around the original tile size. For example, a 100� 100

pixel segmentation image tile extracted from the

fluorescence image would be slid over a 200� 200

pixel local neighbourhood within the greyscale image.

The size of this ‘search’ neighbourhood was deter-

mined by observing the maximum spatial movement

of objects when processing water samples—move-

ment larger than 50 pixels was not observed.

4.3.2. Region growing

Once an approximate location of the object in the

greyscale image is determined, seeded region growing

(SRG) is commenced. In the following discussion, we

use the terms ‘point’ and ‘pixel’ interchangeably.

First, a seed point within the object is determined,

from which the region will be ‘grown’. To ensure that

the seed point is located within the object, we select

the seed point as being the pixel with the lowest

greyscale intensity located within the bounds of the

template-matched segmentation mask. Because an

image object is darker than the surrounding back-

ground, choosing the lowest pixel intensity guarantees

a seed point within the object. Neighbouring pixels of
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this seed point that are ‘similar’ in characteristic

(explained later) are then added to a pixel queue.

After selecting this start point, an iterative process

commences:

� Remove point from front of pixel queue and update

region image;
� Locate the eight nearest neighbours of this point;
� Add to the queue those neighbouring points that are

not already in the queue, have not been processed

yet, and which have sufficient similarity;
� Sort the queue points in order of similarity;
� Repeat until queue is empty.

The ‘region image’ IR is simply a new greyscale

image that will eventually contain the segmented

phycological object. This image initially contains only

one point (the seed point), and gradually grows until

the iterative process is finished (the queue is empty).

Similarity is a measure of how similar a point’s

intensity is to the current average intensity of the

‘region image’,

Sðr; cÞ ¼ absðIðr; cÞ � ĪRÞ;

where S is the similarity measure for pixel (r,c), I(r,c)

is the pixel intensity at point (r,c), and ĪR is the

average intensity of the region image. As points are

added to the region image, the intensity average ĪR is

updated.

New neighbouring points are only added to the

queue if their similarity value meets this requirement:

Sðr; cÞVðIBG � ĪÞ=2;

where IBG is the average intensity of the image back-

ground. That is, if the pixel is closer in intensity to the

object than the image background, it is considered a

part of the object and added to the pixel queue for

later processing.

Fig. 5 details the growth of a region using SRG.

The targeted object to be extracted is a Microcystis

specimen. The image sequence shows the gradual

growth of the region from a single pixel to the entire

specimen image. Note in the final image how the

algorithm has, at two locations, correctly avoided the

brighter background pixels contained within the speci-

men. The inclusion of such false object points leads to

inaccurate measurement of the object’s statistical

properties such as area, and ultimately can result in

incorrect species classification of the specimen.

It should be noted that our region growing proce-

dure is a modified form of that of Adams and Bischof

(1994). The latter algorithm partitions the entire image

into two or more regions, and therefore processes all

image pixels. Because the image background is of no

interest to us, we choose to only add foreground

object pixels to the queue. This modification makes

a drastic change to algorithm speed, as the usually

large number of background pixels in an image are

not processed. Objects are processed at a speed of

several hundredths of a second for small objects, to

approximately 1 s for the largest objects whose size

approached that of the entire microscope field-of-view

(such as some Microcystis specimens), using an 850-

MHz Windows PC.

4.4. Focus check

We individually confirm the focal quality of seg-

mented objects to ensure they possess an adequate

level of focus. This step is of vital importance for the

case of water sample analysis. Because a slide water

sample is a three-dimensional body, some objects may

fall outside the in-focus portion of the microscope’s

Fig. 5. Seeded region growing in action. This image sequence shows the growth of the region image after 100, 700, 1400, 2100, and 2796

iterations of the region-growing algorithm. The original image of the region to be extracted (a Microcystis specimen) is shown on the far left.
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view. This is also true for the case of sediment sample

images, and it is further compounded by the already

poor spatial frequency response of the fluorescence

camera. As a result, there can be great variability in

the focal accuracy of objects appearing in the micro-

scope’s field of view. We fully processed and classi-

fied objects with adequate focal quality. Objects that

did not achieve a minimum focus limit were analysed

to measure simple characteristics such as area and

shape, and added to the database, but were not

subsequently classified. This is because the defocus

effect adversely influences many of the statistical

properties of the image, and thus may have a strong

negative influence on classification accuracy. We

measured focal quality by removing low spatial fre-

quency components of the object image, and averag-

ing the remaining power spectrum across one image

dimension (Oliva et al., 1998),

FðIÞ ¼
X
r

X
c

ðhðrÞ � Iðr; cÞÞ2

X
r

X
c

Iðr; cÞ=A
 !2

;

,

where F(I) is the focal quality measure for greyscale

image I of spatial domain A= rmax� cmax pixels, h(r)

is the spatial domain response of the 1-D high-pass

filter kernel, and � is the convolution operator. This is

a widely used technique and is computationally light,

allowing high-speed focal quality measurement.

4.5. Object feature extraction

When we wish to classify an object into one of

several classes, i.e., Microcystis, Anabaena, etc., we

need to quantitatively measure characteristics of the

object that may signify its membership class. For

instance, the characteristic ‘area’ is a strong discrim-

inator of class membership when classifying Micro-

cystis and Anabaena cyanobacteria, as these two

genera differ substantially in size. We call these

characteristics features in pattern recognition terms,

and the process of measuring such characteristics as

feature extraction.

During the training phase of our system, we

measured a total of 120 features of each object (see

Table 1), including morphometric properties (area,

circularity, perimeter length, etc.), object boundary

shape properties, frequency domain properties, and

second-order spatial statistics including Grey Level

Co-occurrence Matrix (GLCM) measures—a power-

ful method of texture analysis which models texture as

an overall or average spatial relationship between grey

tones in an image (Haralick et al., 1973; Haralick,

1979; Conners and Harlow, 1980). A complete list of

the feature measures used in this research can be

found in Walker and Kumagai (2000). For system

testing and actual day-to-day operation, only a small

optimised subset of these 120 features are measured

(see the following section).

4.6. Feature selection

Selecting a subset of discriminatory features from

a larger set is called ‘feature selection’. The process

is arguably one of the most important steps in

pattern recognition. Generally, there will exist a

high dimensional feature space, with a limited

number of data samples to accurately characterise

the class distributions within this space. By remov-

ing redundant features that do not discriminate

between classes, we can better represent this now

lower-dimensional space, allowing us to design a

more robust classifier. Also, during real-world oper-

ation of the system, only this minimal subset of

discriminatory features need be measured to classify

a specimen.

To find an optimal feature subset, we used a feature

selection process called sequential forward-selection/

backward-elimination (Hand, 1981). To an initially

Table 1

Types of features extracted from each image object

Feature type Examples Number

measured

Morphometric Area, circularity 4

Boundary shape Curvature properties 5

Frequency domain Fourier components

of boundary

14

Second-order

statistical

properties

Grey Level Co-occurrence

Matrix features

97

Grey Level Variance Matrix

features (GLVM—see

Yogesan et al., 1994)
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empty feature set, our algorithm adds two new fea-

tures and then removes one feature, repeating itera-

tively until we have the desired number of optimised

features. By doing so, we capture feature pairs that

possess higher-order discriminatory power. This

method almost always gives optimal results and

computationally is comparable to less optimal

approaches (Kittler, 1978). Using this method, we

found that a total of three features from the original

set of 120 possessed sufficient significant discrimina-

tory power to accurately classify the water-born

cyanobacteria as Microcystis spp. or Anabaena spp.

4.7. Classification

Classification was implemented using a general

Bayes decision function for assumed Gaussian feature

distributions with unequal variance–covariance matri-

ces (Gonzalez and Woods, 1993). The resulting deci-

sion surface (where d1 = d2) is of hyperquadric form:

diðxÞ ¼ logPxi
� 1

2
logACiA� 1

2

� ðx� x̄iÞ0C
�1

i ðx� x̄iÞ
h i

; i ¼ f1; 2g;

where x is the feature vector of the object to be

classified, di(x) represents the discriminant measure

for x, Pxi
is the a priori probability of class xi, and Ci

and x̄i are the variance–covariance matrix and mean

vector, respectively, for class i data (determined from

our database of expertly classified microalgae speci-

mens obtained from natural populations).

The resulting decision surface is of hyperquadric.

Microalgae in water samples were classified to the

genus level. There were insufficient database exam-

ples of the species Aphanizomenon to provide an

accurate statistical model for their feature distribu-

tions, so we decided to target only the Anabaena and

Microcystis genera. A. smithii and A. ucrainica were

combined to form the first data class—Anabaena spp.,

while M. aeruginosa and M. wesenbergii formed the

second—Microcystis spp.

5. Results and discussion

5.1. Image registration solution for translation,

rotation, and deformation

Fig. 6 shows the results of template matching and

region growing for an object that had undergone

spatial translation and slight deformation after the

fluorescence image was captured. The original seg-

mentation mask displacement error is approximately

95% by area (a). This has been mostly corrected by

template matching (b). However, some parts of the

object have been cropped and many background

pixels still exist in the foreground due to deformation

of the object. This registration error has been com-

pletely corrected by seeded region growing (c).

Fig. 7 is another example showing translation,

slight rotation, and deformation changes. The original

segmentation mask displacement error is approxi-

mately 50% by area (a). This has been corrected by

template matching (b); however, slight rotation and

Fig. 6. Original segmented image (a); after template matching (b); after region grown (c). Note the slight shape deformation in image (b), which

is corrected in image (c). Scale bar = 20 Am.
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deformation error still exists. These errors have been

removed by seeded region growing (c).

The success or failure of our image registration

correction algorithm is dependent on the amount of

spatial rotation and deformation of each object. The

method is not affected by pure spatial translation at all

(unless the amount of translation is so great that the

object falls outside the algorithm’s ‘search area’—we

did not experience any such failures due to large

specimen spatial translation). It is possible for the

algorithm to fail to successfully locate a specimen due

to spatial rotation or deformation, but only if such

movement is significant and, even in that case, only if

there is another specimen within the search area that

better matches the mask of the specimen being tem-

plate-matched. During system training and evaluation,

such template-matching failures were rare to the point

of being insignificant.

5.2. Image analysis results

A total of 585 objects were extracted from 112

sediment and water sample images. Our system had

no difficulty in locating microalgae specimens located

in sediment samples. Measurement of statistical prop-

erties such as the number of microalgae objects and

object area was extremely rapid, at less than 50 ms per

object. Accuracy of measurement depended on two

conditions—the strength of the specimen’s fluores-

cence, and whether the specimen was partly occluded

by sediment. It should be noted that the accuracy of

human screeners would also suffer under the same

conditions.

For the water-born microalgae genera Microcystis

spp. and Anabaena spp., an apparent classification

rate of approximately 90% was achieved using only

one feature (a ‘Circularity’ measure). Using three

features (morphometric and GLCM texture meas-

ures), our system was able to classify these images

with approximately 97.6% accuracy using the Leave-

One-Out classification technique. Fig. 8 shows a plot

of apparent classification error vs. the number of

features used for classifying the data. Apparent clas-

sification error began to increase when more than

three optimised features were used. This is most

likely a classic case of the ‘curse of dimensionality’,

where the advantage of adding extra features with

minimal new discriminatory information is offset by

the difficulty in modelling a feature space of greater

dimensionality. See Hand (1981, p. 120) and Hand

(1997, p. 80) for further discussion of this phenom-

enon. The confusion matrix in Table 2 shows suffi-

ciently low error rates for both species to provide high

confidence in the system’s automated analysis capa-

bilities.

5.3. Feature analysis

We analysed the features that were found to provide

the highest class-discrimination by the feature selection

process. The statistical data for two of these features

(‘Circularity’ and ‘Inertia’) are shown as a scatter plot

in Fig. 9. The third feature is ‘Diagonal moment’.

The morphometric feature ‘Circularity’ is a meas-

ure relating object boundary length l to object area A,

and is defined as the ratio l2/4pA. A perfectly circular

Fig. 7. Original segmented image (a); after template matching (b); after region grown (c). Note the minor shape deformation in image (b), which

is corrected in image (c). Scale bar = 20 Am.
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Fig. 8. A plot of system classification error versus the number of statistical features used to discriminate between the Anabaena spp. and

Microcystis spp. genera. We note that using 3 of the 120 measured statistical properties provides the least classification error. Using these 3

features, the system produced an apparent error rate of 1.9% during system design, and a real error rate of 2.73% via Leave-One-Out

classification during final performance evaluation.

Fig. 9. A scatter plot showing the distribution of object data in the feature space of the best feature pair—‘Circularity’ and ‘Inertia’. The

quadratic line that partitions this feature space into the two classes Anabaena spp. (� ) and Microcystis spp. (o) is also drawn.
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object has a circularity measure of 1. Anabaena spp.

generally has large boundary length nd low internal

area, resulting in high circularity measures. Micro-

cystis on the other hand are usually more compact in

shape, resulting in a lower measures. This relationship

can be clearly seen in the scatter plot.

It is often difficult to relate a mathematically

derived measurement of an image property to a

physical property of the specimen. Such is the case

for the GLCM texture feature called ‘Inertia’. A full

description of this feature and the well-known and

often-used GLCM technique in general is beyond the

scope of this paper—we refer the reader instead to

Haralick (1979) and Conners and Harlow (1980).

Qualitatively speaking, the Inertia measure gives high

scores to images that contain large variability in

intensity over a particular spatial displacement—in

this particular case, a displacement of 4 pixels or

approximately 7 Am. Images ofMicrocystis specimens

generally had large areas with very little variation in

intensity, resulting in low Inertia measures. An Ana-

baena specimen on the other hand will generally

attain a higher Inertia score, because its long thin

shape means that much of its internal structure (dark

intensities) is near to its perimeter (light intensities).

Once again, this relationship is clearly demonstrated

in Fig. 9. The third most discriminatory feature—

‘Diagonal Moment’—is another GLCM texture fea-

ture. It is very similar to the feature Inertia; however,

in this case, it is measuring structure at a finer spatial

scale—1 pixel displacement or approximately 2 Am.

6. Conclusions

Fluorescence excitation has been shown to be an

invaluable tool for analysing complex image scenes

containing microalgae, such as those of sediment

samples, which cannot be automatically processed

by standard bright-field light microscopy and grey-

scale image analysis. Phycological objects in sedi-

ment taken from Lake Biwa were easily located

and their statistical properties quantitatively meas-

ured. The technique also proved invaluable for

automated analysis of microalgae contained in water

samples. Without fluorescence excitation, an analy-

sis system would need to cope with the vast num-

bers of non-algae species that co-exist with micro-

algae, making species classification much more

difficult.

Limitations in current microscope technology—

that of fluorescence/greyscale imaging switching

delay—resulted in our image analysis system being

one step away from fully automatic operation, and

introduced image segmentation registration error due

to specimen movement in water. The three forms of

registration error—spatial translation, rotation, and

deformation, were corrected using template matching

and region growing techniques. We showed that

region-growing techniques are invaluable for solving

the latter two registration errors. While being compu-

tationally intensive, region growing is still less taxing

than other techniques based on rotation correction,

and simultaneously provides a solution to the difficult

problem of segmenting deformed objects. To reduce

computational burden, we implemented a computa-

tionally light form of seeded region growing which

differs significantly from that of Adams and Bischof

(1994):

� Only the foreground object is grown;
� The algorithm automatically determines the seed

location.

The first difference results in much greater compu-

tational speed. The second difference allows the

algorithm to be implemented into a fully automated

system such as the one being developed at Lake Biwa

Research Institute. That is, no human intervention is

required to select object seed points—a drawback of

the Adams and Bischof method.

Our system is currently unable to cope sufficiently

with gross movement of fluorescing specimens such

as the energetic Dinophyceae Ceratium species,

because their locations can change significantly dur-

Table 2

Confusion matrix of classification results for the two data classes of

Anabaena spp. and Microcystis spp.

Actual Classified as:

Anabaena

spp. (%)

Microcystis

spp. (%)

Anabaena spp. 49.1 0.5

Microcystis spp. 1.8 48.5

System performance was evaluated using the Leave-One-Out

technique.
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ing the delay between capturing the fluorescent and

greyscale images. However, this deficiency will be

overcome once automated switching technology

becomes available.

Our system proved to be not only user-friendly, but

also highly accurate in classifying two major genera of

microalgae found in Lake Biwa—the cyanophytes

Anabaena spp. and Microcystis spp. While only cya-

nophytes were used in the present study for evaluating

system performance, due to their abundance and ease

of human expert classification, the system is capable of

analysing any type of microalgae at meet the size

limitations imposed by the microscope field of view.

Classification accuracy was measured to be over 97%.

Future improvements in fluorescence imaging technol-

ogy will allow low-cost, fully automated, species-level

analysis and classification of microalgae contained in

sediment and water samples.
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