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Abstract

In this thesis we investigate the application of image analysis and self
adaptive al


gorithms to the detection of cell abnormalities in cervical smears� Cervical cancer is

a preventable disease and� unlike most cancers� can be easily detected by a routine

screening test� Current manual screening methods are costly and sometimes result in

inaccurate diagnosis due to human error� The introduction of machine
assisted screen


ing will therefore bring signi	cant bene	ts to the community� by reducing 	nancial costs

and increasing screening accuracy�

One of the fundamental weaknesses of research e�orts over the last �� years has been

in identifying a robust set of cell descriptors to allow accurate classi	cation of cytolo


gical samples� Continuing advances in imaging technology and computing power have

provided incremental gains in the diagnostic accuracy of automated cytology systems�

however� there is a need for further improvement� The quantitative analysis of cell

nuclear texture has shown the most promise in the past� and continues to be a major

focus of research e�orts around the world� Our motivation for the work in this thesis

is a belief that greater e�ort in texture analysis research will yield further advances of

signi	cant bene	t�

We investigate the history of texture analysis as applied to automated cytology� and

identify Markovian techniques as being powerful methods of analysis� By Markovian

methods� we mean those techniques which model the joint or conditional statistical

dependence between neighbouring image pixels Markov chains� Gibbs�Markov random

	elds� co
occurrence matrices etc��� In this thesis we concentrate on second
order co


occurrence
based techniques�a powerful and computationally light subset of higher


order Markovian approaches� We identify a weakness common to co
occurrence and

many other methods of analysis� This weakness is the commonly used technique of

applying a set of 	xed functions to extract discriminant features� Such functions may

provide good general performance across a wide range of texture types� but often fail

to capture texture information which is speci	c to the subset of types being analysed�

That is� the methods are globally applicable but are not locally optimised�

iii



Abstract iv

We present a theoretical approach to texture classi	cation which is applicable to

all texture types but which �adapts� to the speci	c characteristics of the texture being

analysed� The self
adaptive multi
scale techniques based on this approach allow the

simultaneous capture of texture characteristics which exist at� and across� several spatial

resolutions� We show by a critical appraisal of the presented methods that this approach

can provide signi	cant improvements in cell classi	cation accuracy� We also show how

the captured characteristics can be used to identify image locations where di�erences

between texture classes occur�something which is generally not possible with other

analysis methods� Finally� we demonstrate the broad applicability of our methods by

classifying a wide range of texture images from natural� industrial and biological origins�
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of such �manual adaptation� of feature functions to suit speci	c texture properties

in terms of increases in classi	cation performance and decreases in feature set

dimensionality� Of greater signi	cance is the fact that de	ning feature functions

which measure speci	c image properties allows far better understanding of the

properties which manifest discrimination between classes� This cannot be said for

most other analysis methods�

�� The Discrimination Matrix

The most signi	cant contribution of this thesis is our presentation of several re


lated methodologies for optimised� multi
scale� self
adaptive feature extraction�

All are based on locating areas of discriminatory power among texture descriptors

extracted across a range of spatial resolutions� In Chapter � we introduce the dis�

crimination matrix�a two
dimensional matrix which� for the 	rst time� provides

a direct indication of the potential �worth� of each co
occurrence matrix element

for classi	cation purposes� The spatial arrangement of discriminatory information

within the matrix also suggests new approaches to extracting optimised features�

and for enhancing the discriminatory power of currently de	ned feature functions�

We demonstrate the success of our approaches by signi	cant decreases in classi	c


ation error of over ����

�� Adaptive Multi�Scale GLCM

In Chapter � we introduce the 	rst self
adaptive multi
scale feature functions for

use with co
occurrence
based methods of texture analysis� Our method places no
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reliance on pre
de	ned 	xed feature functions� unlike all other co
occurrence
based

methods published in the literature� In fact� feature de	nition is based solely on the

speci	c statistical di�erences between texture classes� Furthermore� our technique

is possibly the 	rst co
occurrence
based method to provide simultaneous analysis

of texture across several spatial resolutions� Once again� the technique attains

signi	cant increases in classi	cation performance across a wide range of texture

types�

�� GA�optimised GLCM

Chapter � introduces what we consider to be the 	rst application of optimisa


tion techniques for extracting co
occurrence matrix features� without using neural

network
based methods� While neural networks have been used in the past to

classify texture data� this �black
box� approach often provides little theoretical

guide as to the image properties that are producing the classi	cation result�

The GAoGLCM method allows direct analysis of the optimised feature functions

and� using the remapping technique described in Appendix B� the locating of

areas within images which produce discriminatory information between classes�

Moreover� by careful objective function design� we can optimise feature functions

under a number of criteria� including correlation considerations� 	rst
order or joint

discriminatory power� etc�

�� Wide applicability

We should point out that� while we apply the adaptive methods of Chapters �� �

and � to GLCM matrix data� their applicability is not restricted to this method

of analysis� They can equally be applied to any analysis method where a series

of feature vectors or matrices can be extracted via suitable constraint parameters�

Furthermore� the methodologies we develop in this thesis are �globally applicable�

they can be used to analyse any type of texture�� yet their adaptive nature means

that they are also �locally optimised� for the application problem�

�� Locating discriminatory areas in images

In Appendix B� we demonstrate another signi	cant application of the discrimina


tion matrix for image analysis� Discriminatory features derived from conventional

analysis methods can provide only qualitative cues as to the characteristics of im


age classes which are statistically di�erent� such as image contrast� entropy� or

energy� By using the information contained in the discrimination matrix� we can

directly locate actual areas within an image which provide such discriminatory

information� We demonstrate this in Appendix B by �remapping� discrimination

matrix co
ordinates to actual image pixels� This allows a far better understand
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ing of the processes or physical attributes of image objects which di�er between

classes� We believe this to be the 	rst demonstration of this capability� The tech


nique should prove to be a valuable tool for use in the areas of image analysis and

understanding�
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��� Introduction

Mass screening of the Australian population to identify seemingly healthy individuals

who harbour undetected illnesses has been a growing trend for over �� years� It is

generally accepted that population screening should be undertaken if�

� the disease represents a substantial public health burden�

� an inexpensive screening test is available with reasonable sensitivity� excellent

speci	city� and low risk�

� the curative potential is better in early� compared to advanced stages of disease�

and

� the treatment of screen
detected patients improves their prognosis�

Some diseases meeting the above criteria and which are currently screened in Australia

include tuberculosis� and breast cancer� One of the earliest mass screening programmes

in Australia was initiated in ���� for the detection of cervical cancer� Cervical cancer is

the seventh most common form of cancer among Australian women Australian Bureau

of Statistics ����� a�ecting predominantly post
menopausal� but occasionally young� fe


males� The whole
of
life probability of developing malignant abnormalities of the cervix

is currently ��� and each year there are over ���� new cases reported Department of

Health� Housing� Local Government and Community Services ������ Fortunately� the

successful implementation of a nation
wide screening programme now prevents approx


imately ��� cases of cervical cancer each year Australian Institute of Health ������

and has substantially lowered mortality� Despite this� the incidence of death due to

this preventable disease continues to remain far too high� with ��� deaths recorded in

���� Australian Bureau of Statistics ������ Cervical cancer is rarely seen in women

under �� years of age� Its incidence increases until the late ���s �� cases per ��� ���

women�� after which there is a steady decline until age �� �� cases per ��� ��� women��

There is a further increase in incidence until age ��� where the number of cases remains

close to �� per ��� ��� women Department of Health� Housing� Local Government and

Community Services ������

Cervical cancer usually begins as pre�cancer in the cells which line the cervix� The

a�ected cells� often called neoplastic cells� are so called because they show signs which

suggest a potential to become cancerous� Cervical cancer usually takes more than a

decade to develop from the initial signs of neoplasia pre
cancer� to its invasive form�

While the exact causes of cervical cancer are unknown� there appear to be a number of
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pre
disposing risk factors� including sexual behaviour� age of 	rst pregnancy� smoking�

occupation and even social class Chomet � Chomet ������ The Human Papilloma

Virus HPV� is strongly associated with the incidence of cervical cancer� as it is present

in approximately ��� of smears which show signs of cervical neoplasia Chomet �

Chomet ����� Young� Bevan � Johnson ����� Hallouche ������

Neoplasia covers a wide range of abnormalities which occur in the skin of the cervix�

but are con	ned in the skin� The general condition of cervical abnormality is called

Cervical Intraepithelial Neoplasia CIN�� and the relative degree of abnormality is spe


ci	ed by a numbered su�x� i�e�� CIN�� CIN�� CIN�� in order of increasing severity�

The three CIN grades replace the older histological terms of mild dysplasia� moderate

dysplasia� severe dysplasia� and carcinoma in situ CIS�� with the last two terms repres


enting CIN�� It is interesting to note that up to ��� of CIN� and � cases spontaneously

regress without treatment Chanen ������ Some CIN� cases have also been known to

spontaneously regress� However� women with CIN do have a signi	cantly increased risk

of developing invasive cancer�

Cervical neoplasia most commonly appears in the transformation zone of the cervix�

see Figure ���� The transformation zone is an area of the cervix which undergoes con


tinual pathologic activity� Columnar cells originating in the endocervical canal undergo

metaplasia to squamo
columnar cells� and then subsequently to squamous cells� This

activity often gives rise to pathological changes� including cell neoplasia� It is there


fore vitally important that a sample of cells are taken from the transformation zone

when taking a Pap smear test� because it is this region that is most likely to undergo

pre
malignant or malignant change�

Neoplastic cells are both chemically� functionally� and structurally di�erent from

healthy cells� and they are capable of inducing similar changes in neighbouring healthy

cells Chomet � Chomet ������ As the severity of the neoplasia increases� so does

the uncontrollable growth in neoplastic cell numbers� and the depth of penetration

of these cells into healthy tissue�see Figure ���� If left untreated� the condition may

progress to carcinoma in situ a pre
cancerous condition involving the full thickness of the

epithelium�� and then invasive cancer� When invasive� a�ected cells form tumours and

invade other body tissue and organs such as lymphatic channels and the blood stream�

This spread of cancer around the body from the initial site is known as metastasis�

The long latency of cervical cancer� along with the relative ease with which a sample

of cells can be collected from the cervix� makes this disease particularly amenable to

mass screening� The test� generally known as the �Pap test�� involves the collection of

cells from several areas of the cervix� using a wooden spatula or plastic brush� The

cervical scrape specimen is then smeared on a glass slide and 	xed with an alcohol
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Figure ���� Location of the cervix and transformation zone� Around ��� of cervical can

cers arise in the transformation zone� Reprinted from Department of Health� Housing�
Local Government and Community Services ������

solution� Because the cells are translucent� they must undergo a process of staining

to highlight cytological structure and to aid in their microscopic examination� The

staining material binds to the cell nuclei� membranes� and other debris and artifacts on

the slide� The most widely used staining procedure is the Papanicolaou staining method

commonly known as Pap stain�� 	rst introduced by George Papanicolaou Papanicolaou

� Traut ����� Papanicolaou ������ By deeply staining nuclei� while lightly staining

cytoplasms� the Pap stain provides important colour di�erences and increased contrast

between nuclei and cytoplasm� In Figures ������� we show several images of cervical

smears stained using the Pap staining process�

����� Cervical Cancer Screening in Australia

The Australian Department of Health�s national policy on cervical cancer screening

encourages sexually active women to undergo a Pap smear test on a two
yearly basis

Department of Health� Housing� Local Government and Community Services ������

Women are also encouraged to continue testing for cervical cancer until age ��� Two
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a� b�

c� d�

e�

Figure ���� Grading of cervical cell neoplasia� a� Normal� b� CIN�� c� CIN�� d�
CIN�� e� CIS with micro invasive carcinoma�
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Figure ���� An example of squamous epithelial cells� captured at ��� magni	cation�
These cells are diagnostically normal� and are characterised by large cytoplasmic area
and small� dense nuclei�

Figure ���� An example of CIN� captured at ���� magni	cation� These neoplastic cells
are characterised by irregular nuclear shape� much larger nuclei� and large nuclear
to

cytoplasmic NC� area ratio� Large NC ratio is generally a strong indicator of malignant
abnormality�

Figure ���� An example of cells infected by HPV� indicated by the �halo e�ect� around
the cell nuclei� This is a benign condition� however� there is a strong link between the
presence of this virus and the occurrence of cell neoplasia�
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yearly Pap smear tests reduce the cumulative incidence of cervical cancer by over ���

Department of Health� Housing� Local Government and Community Services ������

This programme raises two very important issues� relating to the 	nancial cost to so


ciety� and to its e�ectiveness in signi	cantly reducing the occurrence of cervical cancer

in the community� Firstly� bi
annual screening has resulted in a costly and labour in


tensive programme of manually viewing millions of Pap smear slides each year� The

current annual cost to Government and health insurance bodies is in the vicinity of ���

million dollars Australian Institute of Health ������ Secondly� the Pap test is expli


citly a screening test� as opposed to a diagnostic procedure� As such� the huge number

of Pap slides requiring analysis each year currently � million annually in Australia��

necessitates minimising the total time spent on each slide by cytologists to around ��

minutes� As each slide contains up to ��� ��� cells� a thorough examination of every

cell is impossible� resulting in an elevated risk of slide misclassi	cation� It is generally

accepted that ������ of Pap smears are mis
diagnosed in some way�a result of poor

sampling of the cervix� poor staining of cells� poor cytologist training� fatigue� etc�

-ve

Input slide stream

+ve

-ve

QC loop
random 10%

Laboratory

Figure ���� Manual screening procedures at cytology laboratories� As a quality control
check� a random ��� of slides classi	ed as negative containing no detected abnormal

ities� are returned for further manual screening�

Figure ��� shows the operational procedures associated with manual screening under


taken at cytology laboratories� Manual screening of Pap slides is a two
stage process�

screening and if necessary� diagnosis� Each slide in the input stream is initially screened

by a trained cytologist� This process involves microscopic examination of �	elds� of cells

at low magni	cation� Suspicious cells are examined more closely using higher magni	c
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ations� The locations of suspicious cells are marked on the slide cover slip to allow their

relocation� Slides which contain even a single abnormal cell� or which appear suspicious

in any way� are further examined by a cytotechnologist or cytopathologist� These in


clude slides which contain benign abnormalities such as HPV� candida� or the herpes

virus etc� The grading of a slide is based on the grading of the slide�s most abnormal

cell�so
called extreme value grading�

Usually� a smear is reported as belonging to one of four groups�

� Negative�

� Abnormal�

� Positive�

� Unsatisfactory�

A smear may be reported as �unsatisfactory for evaluation� for several reasons�

These include a slide with an insu�cient number of squamous epithelial or endocervical

cells indicating poor sampling of the cervix and in particular� the transformation zone��

obscuring blood or other artifacts� or a broken slide Kurman � Solomon ������ Such

smears do not allow the reliable detection of cervical abnormalities� In such a situation

a patient is requested to undergo a second smear test�

A �Negative� smear indicates a smear which was satisfactory for evaluation purposes�

and upon which no abnormalities were detected� Patients receiving this result need not

undergo a further examination for a period of two years�

An �Abnormal� smear report results when any changes which di�er from a negat


ive slide are detected� These changes include benign cellular abnormalities� as well as

in�ammatory changes which occur as a result of bacterial� viral and fungal infections

Chomet � Chomet ������ Patients with abnormal smears are requested to have the

cause of the abnormality treated� followed by a second smear test�

A �Positive� smear is reported when a pre
cancerous or cancerous abnormality is

detected on the slide� even if only a single cell exhibits the abnormality� Because the

Pap test is simply a screening test� it does not provide vital diagnostic information such

as the position� spread or depth of the abnormality on the cervix� This information

is necessary for determining which of the various treatments a patient will undergo�

usually cone biopsy or laser for pre
cancer� and hysterectomy or radiotherapy for invasive

cancer� Patients with positive smears are requested to under colposcopic examination�

where the cervix is directly examined under magni	cation�
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Smear examination is a qualitative and somewhat subjective process� where charac


teristics of the cells are examined under light microscope� The most common cues to

possible cell abnormality include�

� Nuclear size� Pre
cancerous cells generally have larger nuclear area�

� Cytoplasm and nuclear shape� Pre
cancerous cells generally have cytoplasms and

nuclei of irregular shape�

� The ratio of nuclear to cytoplasm area NC ratio�� For abnormal cells� the NC

ratio is generally larger�

� Cell spatial context� Abnormal cells are often found in clumps�

� Nuclear chromatin density� Pre
cancerous cells tend to have denser chromatin�

It is common for several of these features to be present on an abnormal slide�

Of the slides which are initially diagnosed as �negative� i�e�� those on which no

abnormalities are found�� a small sample�usually ����are selected for rescreening by

a senior cytologist� This involves manually screening the selected slides a second time�

This gives a measure of quality control for the screening process and the laboratory as

a whole�

��� Automated Analysis of Cervical Smears

Because of the huge workload and 	nancial cost involved in population screening� and

the high incidence of slide misclassi	cation due to human error� the mass
screening

programme would bene	t greatly from the introduction of automated analysis of cervical

smears� Machine
assisted analysis may not only reduce the huge 	nancial cost of slide

processing� but more importantly may result in more accurate diagnosis� Computerised

cervical screening has been the subject of research for over �� years� Early automated

systems included

� TICAS Wied� Bartels� Barh � Old	eld ������

� CERVIFIP Tucker � Shippey ������

� Cybest Tanaka� Ikeda� Ueno� Watanabe� Imasato� Tsunekawa� Okamoto� Kashida

� Mukawa ����� Tanaka� Ueno� Ishikawa� Konoike� Shimaoka� Yamauchi� Hosoi�

Okamoto � Tsunekawa ������
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� Leytas Ploem� Werwoerd� Bonnet � Koper ����� Ploem� Goyarts
Veldstra� van

Driel
Kulker� Zaaner � Meyer ����� van Driel
Kulker � Ploem ������

� BioPEPR Zahniser� Oud� Raaijmakers� Vooys � van de Walle ������ and

� SAMBA Brugal� Garbay� Giroud � Adelh ������

Many of these systems failed due to software and hardware de	ciencies� and loss of

	nancial backing� To be successful� an automated system needs to analyse over ��

��� cells per minute� and requires very specialised and expensive computer architec


ture Anderson ������ Recent automated systems utilise image processing techniques

to measure various slide� cell� and nuclear characteristics called features� These include

contextual features such as cell distributions Garcia ������ morphometric or photo


metric features of the cells including cell size and shape Zahniser ����� Knesel Jr�

Geyer� Gahm� Nguyen� Fischer � Dorrer ������ nuclear features including shape and

texture� and Malignancy Associated Change MAC� measurements Garner� Ferguson

� Palcic ������ These features are known to change when cells become neoplastic� By

measuring these features and applying Pattern Recognition PR� techniques� an auto


mated system can locate the �most abnormal� cells on a slide� and �ag them for review by

a trained cytologist� This substantially reduces the task of manually locating abnormal

cells among the ��� ��� on a typical slide�

The most successful automated systems have now gained US FDA approval for use

as quality control rescreeners or adjunct screeners� These include the AUTOPAP ��� R�
Anderson ����� by NeoPath� Inc�� and PapNet R� Mango � Herriman ������ by Neur


omedical Systems� Inc� A quality control rescreener replaces the random selection of

negative slides for rescreening�see Figure ���� Rescreeners locate possibly
abnormal

cells on slides which were previously classi	ed as normal by human experts� By return


ing the �most abnormal� negative slides for further manual analysis� rather than just a

random sample� false
negative rates due to slide misclassi	cation can be further reduced�

Recent negative publicity regarding the accuracy of manual screening has lead to the

creation of new opportunities for machine assisted screening� In many countries� includ


ing the United States and Australia� women now have the choice of having their Pap

slide rescreened by an adjunct screener� As Figure ��� shows� such slides are screened

twice� both manually and if negative� by machine� During rescreening� the most ab


normal cells on a slide are located� and their images displayed on a high
resolution

monitor for viewing by a cytologist� Adjunct screening currently incurs an extra charge

approximately  ���� and is paid directly by the patient�
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Figure ���� Using an automated system for quality control rescreening� All slides manu

ally classi	ed as normal are passed through a quality control check� The worst ��� of
these normal slides are returned for further manual screening�
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Figure ���� Using an automated system as an adjunct screener� Slides classi	ed as
normal by the QC manual screeners are further rescreened by an automated system�
The �most abnormal� cells on these slides are then reviewed by a cytologist�

Using pre�screeners can yield 	nancial bene	ts for cytology labs and has the poten


tial for improving slide diagnosis accuracy� A pre
screener reduces the volume of slides

manually screened by removing the �most normal� slides from the input slide stream�

This reduced volume allows the use of fewer trained screeners and an equivalent reduc
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Figure ���� A pre
screener enriches the �ow of abnormal slides to human screeners by
removing the �least abnormal� slides from manual screening�

tion in infrastructure and equipment� Alternatively� the time spend manually examining

a slide can be increased� Potential increases in diagnosis accuracy can be achieved be


cause many slides are screened twice�by both human and machine screening� Also�

removing the �most normal� slides enriches the stream of possibly abnormal slides� mak


ing the task of manual screening easier� Figure ��� shows such a system� where the

�most normal� ��� of slides are removed from manual screening� Because only ��� of

the machine
classi	ed normal slides are QC reviewed� the automated pre
screener must

be accurate!

Of greatest bene	t are automated systems for use as primary screeners� where all

slides are diagnosed by machine� Several countries are already using the PapNet R�
automated screener as a primary screener� including Hong Kong� the Netherlands� Bel


gium� and Switzerland�

The success or failure of these systems rests with their acceptance by members of

the medical profession� However� wide acceptance may not be as far away as we may

initially believe� In a recent survey Wied ����� of a randomly selected ��� from a

group of ����� internationally prominent cytologists from �� countries� ��� responses

were received to the question�



���� MALIGNANCY ASSOCIATED CHANGES �


�Do you believe that interactive cytomorphometry automa�

tion i�e�� that a computerised system will pre
scan the slide and

show �alarms� for human intervention and decision� will become

a useful routine addition to your laboratory in the foreseeable fu


ture"�

Over ��� of respondents answered �yes�� Of these� ��� believed that such a system

would be �economical� diagnostically accurate� and commercially available� within 	ve

years or less�

��� Malignancy Associated Changes

One weakness of both manual screening and current automated systems is their inab


ility to detect abnormalities on slides from patients with cervical abnormalities� when

the slide contains no diagnostic cells because of sampling error� Sampling error occurs

when cells from an area of the cervix containing abnormality are not collected during

a cervical examination� This is usually due to poor technique on the part of the phys


ician collecting the smear� It has been conservatively estimated that around ��� of

Pap smears test falsely
negative� because of the absence of any diagnostic cells on the

slide�a result of poor sampling of the cervix Gay� Donaldson � Goellner ����� Depart


ment of Health� Housing� Local Government and Community Services ������ Current

automated or manual screening techniques cannot detect patients with cytological ab


normalities when such abnormalities do not appear on the cervical smear� Recently� a

Canadian Research team Palcic � MacAulay ����� Garner et al� ����� demonstrated

an automated screening technique using a completely di�erent principle called Malig�

nancy Associated Changes MACs�� which may overcome this sampling problem� MACs

is thought to be a response by normal cells to a �	eld e�ect� induced by malignant le


sions or even neoplastic cells� and was 	rst reported over �� years ago Gruner ������

This response by apparently normal cells is in the form of very subtle but statistically

measurable changes in cell characteristics� including

� slight increases in nuclear
to
cytoplasmic area ratio�

� orderly structure of heteropyknotic chromatin�

� numerous chromocentres�

� curved chromatin bands in crowded but orderly arrangements�
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� clear spherical nuclear areas of uniform size surrounded by curved pyknotic chro


matin bands� and

� an absence of nucleoli or multi
nucleated cells Neiburgs ������

It is interesting to note that virtually all the above indicators relate to DNA organisation

and distribution in the cell nucleus� We will discuss this further in Chapter �� Hanse


laar� MacAulay� Palcic� Garner � LeRiche ����� and Payne� Lam� LeRiche� MacAulay�

Ikeda � Palcic ����� have also suggested that MACs may play a role in discriminating

between progressive and regressive lesions� thus providing important prognostic inform


ation and possible reductions in treatment costs� That is� by careful monitoring of a

MACs score or index�� it may be possible to avoid expensive and somewhat traumatic

procedures such as cone biopsy or laser evaporation� Furthermore� sampling error is no

longer of concern� because we are no longer looking for diagnostically abnormal cells

which may only number less than ten among ��� ��� normal cells so
called rare event

detection�� The MACs a�ect is expressed by apparently normal cells� so we only need

a representative sample of normal cells from the cervix� But perhaps the biggest ad


vantage of an automated system operating on the MACs principle is the fact that we

no longer need to analyse every cell on a slide for possible abnormalities� With MACs�

we only need to analyse a small sample of the best presented and most visible cells on

a slide� By analysing far fewer cells� we can increase the analysis time per cell many


fold� thus increasing the accuracy of the screening process without increasing the overall

time for screening each slide� Moreover� the highly expensive� custom
made� high
speed

computer vision components of current automated systems� necessitated by the need

to analyse ��� ��� cells in minimal time� can now be replaced by more cost
e�ective

components� We therefore have a much greater potential for introducing low
cost MACs


based automated screening systems into cytology laboratories�

The decreased photo
mechanical requirements of a MACs system are o�set by in


creased computational requirements� Because the MACs a�ect is expressed in very

subtle changes in the characteristics of normal cells� we are now faced with the chal


lenge of de	ning new ways to measure such minute changes� Unfortunately� many of

the cell descriptors published over the last �� years and currently used in commercial

systems� are of little use in a MACs system because they are based on discriminating

between normal and truly
abnormal neoplastic� cells which have vastly di�erent charac


teristics to MACs
a�ected normal cells� However� they do provide us with a foundation

from which to begin our search�

�a number indicating the severity of cervical abnormality	
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This concludes our introduction to the history of� and current trends in� cervical

cancer mass
screening in Australia and around the world� We have also covered the

topic of automated systems which use computer vision as a basis for reducing costs

and increasing the reliability of the screening process� We have not yet discussed the

fundamental building blocks of such systems� or the computational processes which allow

autonomous detection of pre
malignant abnormalities� In the next section we discuss the

processes typically found in automated systems which utilise computer vision techniques�

��� Pattern Recognition

Pattern recognition is the application of mathematical and statistical techniques to the

identi	cation and classi	cation of objects from di�ering classes� Generally speaking� PR

is a science concerning the description and recognition of objects using measurements�

The four engineering approaches to PR are statistical� structural� syntactic� and more

recently� Neural Network NN�� This section concerns the former approach statistically


based PR�� because it is by far the most widely applied� PR techniques are generally

developed in two stages�a training stage where the PR system is 	rst designed� and a

testing stage where the performance of the system is evaluated� By classes� we mean

groups of objects whose properties intrinsically di�er between groups� but which are

similar for objects within groups� Cytologically normal and abnormal cells are one

example of di�ering classes� as are species of animals or plants etc� We can characterise

classes by the qualitative or quantitative measurement of object properties� known as

features� Often� to facilitate automated analysis� these properties are measured from

images of the object� rather than directly from the object� Prior to such measurement�

it is often necessary to isolate the object of interest from its surrounding environment�a

cell nucleus from its surrounding cytoplasm etc��in a process called segmentation� The

measurement of object features is known as feature extraction� We usually do not know

a priori which features or object characteristics will best discriminate between classes� so

it is common to extract a large quantity during the training stage of system design� This

large set of features is then reduced by a process known as feature selection� Feature

selection involve measuring statistical parameters such as mean and variance� from

class
conditioned distributions of features� Features are said to possess discriminatory

power when their estimated statistics vary between classes in some manner�

The aim of any pattern recognition system is to enable the allocation of an object�

whose class membership is unknown� into one of several classes� Classifying a cell sample

from a patient� into either the normal or abnormal class� is such an example� The

allocation of objects into classes� based on its features� is called classi	cation� Classi	er
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design is based on discriminant analysis�a technique for separating and classifying two

groups of data� Discriminant analysis has two parts to it� The 	rst is discriminating

between two groups of multivariate data from known sources� These two data groups

are the control groups� known as the training set� The second step is classifying data of

unknown origin into one of the two groups by applying the discriminating function to

the unknown group�

A knowledge base plays an important role in PR systems� It encodes prior knowledge

about the problem domain� and helps to guide each of the PR sub
blocks during system

training and testing� The knowledge base can also accept feedback information from sub


blocks and thus control the interaction between them� An example of this would be error

information from an image segmenter being used to control the image acquisition and

pre
processing blocks for better image quality� It is commonly believed that the greater

the amount of encoded prior knowledge� the greater the performance of the PR system�

Figure ���� details each of the fundamental components in a typical pattern recognition

system used for image processing� We will now discuss each of these components in

more detail�

Problem
domain

Feature
Extraction

Feature
Pre-processing

AcquisitionImage 

Segmentation

Knowledge Base

Feature
Selection

Classification

Result

Image

Pre-processing
Image

Figure ����� The fundamental components of a typical pattern recognition system used
for image processing� Notice the central role of a knowledge base in guiding the operation
of each PR sub
system�
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����� Segmentation

Segmentation is the process of dividing an image into its constituent parts for further

analysis� We commonly refer to such parts as regions of interest� For example� com


puter analysis of cervical cells commonly entails analysing cell cytoplasm� nucleus� and

chromatin�see Figure ����� We need to isolate each region of interest from other re


gions which have no diagnostic importance� such as image background or artifacts� As

shown in Figure ����� the level of segmentation required� and the algorithms used to

achieve such segmentation� are in�uenced by the characteristics of each region of in


terest� i�e�� the problem domain� As such� the success of a segmentation algorithm is

inextricably linked to encoding as much prior knowledge as possible into the PR system�

The segmentation process is complete when all regions of interest have been isolated�

Figure ����� An example image of cervical cells� detailing typical regions of interest
which may be of diagnostic importance�cell nuclei and cytoplasms� Other regions
which may be of no diagnostic importance include artifacts and image background� The
white lines represent segmentation boundaries which isolate the constituent parts of the
image� Reprinted from Bradley ������

Segmentation algorithms are as numerous as the applications in which they are ap


plied� Similarly� there are several dichotomies to which these algorithms can be grouped�

One example is similarity and discontinuity methods such as region growing and edge
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detection Gonzalez � Woods ������ These two methods apply complementary ap


proaches to image segmentation� In region growing� image components are detected

based on pixel similarity or region homogeneity� Edge detection� however� segments

an image based on dissimilarity or inhomogeneity between image pixels or regions� A

second dichotomy is between global and local methods of segmentation� Both region

growing and edge detection can be considered as local methods� because the classi	c


ation of an image pixel as either boundary or object is based on properties which are

spatially local to the pixel� An example of a global method of segmentation is global

thresholding� where an image is segmented based on the statistics of the entire image�

Global thresholding is particularly useful when the grey levels of the image components

and background form two or more dominant modes� We demonstrate this method in

Figure ���� by segmenting a grey
scale image of a cell from its surrounding background�

A histogram of the image I reveals a bi
modal distribution of grey levels� represent
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Figure ����� An example of image segmentation using a global threshold� Notice that
the histogram is bi
modal� with two peaks at I # ��� and I # ���� representing
foreground cell� and background slide� image components� By choosing a suitable
threshold between these intensities� i�e�� T # ���� we can successfully segment the
image components�

ing the cell and background� Choosing a threshold level T in the valley between these

two distributions T # ����� and setting all pixel intensities below this threshold to ��

successfully segments this image� We can express this operation thus�

I �x� y� #

��
� Ix� y� if Ix� y� � T �

� if Ix� y� � T�
����
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where the co
ordinate pair x� y� is a valid image pixel�

Recent techniques such as morphological Vincent � Beucher ����� and multi


resolution segmentation Spann � Wilson ����� Hong � Rosenfeld ������ which work

on images both globally and locally� have gained signi	cant interest as they overcome

the inherent de	ciencies of the traditional methods mentioned above� We will discuss

in detail our methodology for image segmentation� using a morphological process� in

Section ������

����� Image Pre�processing

Photometric pre
processing of digital images is a requirement of many image analysis

systems� We apply pre
processing prior to the application of subsequent image opera


tions for several reasons� including�

�� to restore images that have been corrupted in some way�

�� to enhance image attributes which are of particular interest� and

�� to requantise or normalise a set of images to ensure common photometric or stat


istical properties�

For example� images corrupted by �impulse� noise can be pre
processed using a median

	lter to remove such noise� Impulse noise is a stochastic process which results in a

random selection of image pixels taking on extreme intensity values� A median 	lter

replaces the grey level of a pixel by the median value of the grey levels in a neighbourhood

surrounding the pixel� It is a form of 	ltering which removes spike
like components from

an image� yet preserves edge sharpness� Removing noise from images is an example of

image restoration� and we show the results of such a process in Figure �����

Restored imageCorrupted imageOriginal image

Figure ����� The process of restoring an image corrupted by impulse noise� The restored
image is the result of median 	ltering the corrupted image� using a �� neighbourhood�
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A second type of pre
processing� called image enhancement� involves applying oper


ators to enhance� or highlight� image properties� Enhancing such properties aids in the

visual examination� analysis� and understanding of images� One example of enhance


ment� called contrast stretching� is often applied to images with low contrast� to increase

the dynamic range of intensity levels in the image� Figure ���� shows the results of a

simple linear contrast stretching operation de	ned as

�x� y�� I �x� y� #

�
Ix� y�� Imin

Imax� Imin
 IDmax

�
� ����

where the co
ordinate pair x� y� is a valid image pixel� I �x� y� is the requantised value

for pixel intensity Ix� y�� and IDmax is the maximumphotometric intensity of the device

displaying the image�
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Figure ����� Increasing the dynamic range of pixel intensities by a process called con�
trast stretching� A comparison of the original and contrast
stretched images reveals the
usefulness of this technique in enhancing the visibility of chromatin structure in cell
nuclei� The resulting histogram of pixel intensities on the right shows that we have
attained full use of all pixel intensities�

A further example of image enhancement involves applying a high
pass 	lter to

enhance high gradients or edges in an image� as shown in Figure ����� This operation

may be applied to an image to aid in its segmentation� or it may be used to highlight
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Original image Filtered image

Figure ����� Edge detection of an image by high
pass 	ltering� The resulting image can
now be segmented using a simple global thresholding technique�

	ne structure in an image that cannot be enhanced by standard contrast stretching

operations�

Another example of image pre
processing is the normalisation of images captured

from non
stationary photographic processes� such as x
ray images or microscopy im


ages� Photographic processes are often prone to variation in photometric properties

across a sequence of images� such as mean intensity� contrast� or photometric linearity�

Variations of this type are a form of introduced artifact� or noise� in the image� It

is essential that we remove such noise� prior to measuring image properties� to allow

their most accurate estimation� Image normalisation can help remove the e�ects of non


stationary photographic processes� allowing the PR system as a whole to be independent

of such variation� By pre
processing images using image normalisation algorithms re


quantisation� histogram equalisation� etc��� we also ensure that all images are members

of a common photometric domain� Pre
processing operations such as requantisation also

ful	ll a data
reduction role� by reducing a large� but variable� number of image intens


ities to a smaller� but 	xed� number� In subsequent chapters� we will be comparing the

performance of several algorithms by the classi	cation of �
bit grey
scale images� The

computational burden and storage requirements imposed by these algorithms are related

to the number of image intensities Ng� or the number of image intensities squared N�
g �

By requantising the original ��bit images from Ng # ��� to Ng # �� grey
levels� we

ensure not only common photometric domains for all images� but also a corresponding

reduction in computational burden and storage requirements to �
��th or �

��� th of the ori


ginal� We will discuss image normalisation and histogram equalisation further in Section

������
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����� Feature Extraction

Perhaps the heart of all pattern recognition systems is measuring descriptive properties

of image components� We call such measurement features extraction� and it involves

measuring properties which in some way characterise the object of interest� An example

of feature extraction would be measuring a cell�s area by counting the number of image

pixels within the con	nes of the cell boundary� In many cases� feature types are directly

related to properties that are qualitatively measured by human vision� It is the ability of

computer vision systems to accurately� rapidly� and repeatedly measure object properties

quantitatively� without subjective bias� which provides one of their greatest bene	ts�

The types of image properties measured in cytometry generally fall into several

categories�

� morphometric features � size and shape properties of image objects� cell nucleus

or cytoplasm area� boundary properties such as circularity etc��

� densitometric features � optical density of image components� cell DNA quanti


	cation�

� multi
spectral features � colour and frequency
domain properties� cell dye hue and

saturation etc��

� texture features � spatial relationships between image intensities� cell chromatin

or cytoplasm texture�

While all of the above feature examples relate to cell properties� we can equally apply

these measurement techniques to other areas of image analysis such as remote sensing�

industrial� and other medical applications�

The cell features we have listed above are just a small subset of the many hundreds

that have been evaluated in the literature over the last �� years� Even in the early sev


enties� Prewitt ����� listed about ��� features which were trialed in the CYTOSCAN

system� Unfortunately� features which prove to be of worth in a particular cell analysis

application may not work well in similar applications due to the inherent di�erences

in the equipment and methodology used� These di�erences include the quality of the

microscope� the resolution magni	cation� of image capture� focus algorithms� the cell

staining process� pre
processing methods etc� It is also generally accepted that a con


sistent staining process and using a stoichiometric stain� is vital to the success of any

�a dye whose staining density is proportional to DNA density	
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automated cell analysis system� In fact� almost all cell descriptors in the published lit


erature have been trialed on cells stained using stoichiometric stains� This represents a

major hurdle to the commercial acceptance of automated systems� because the currently

accepted stain the Papanicolaou stain�commonly referred to as the Pap stain�� is not

stoichiometric� It is also unlikely that stoichiometric stains will be accepted by cytology

labs in the near future because�

� The Pap stain is so widely accepted� and

� Positive slides will still need to be manually screened after automated screen


ing� The Pap stain provides signi	cant visual enhancement of cell properties that

manual screening requires�

For these reasons we have concentrated on searching for features which prove to be

robust descriptors of cell properties� when using Papanicolaou stained slides�

Size and density descriptors have been widely reported as being powerful discriminat


ors of normal and abnormal cells� This is not surprising because it is well known that cell

neoplasia results in morphometric and densitometric changes� including increased nuc


lear DNA content� enlarged nuclei� and reduced cytoplasm area Bibbo� Bartels� Dutch

� Wied ����� Komitowski � Zinser ����� Tanaka� Ikeda� Ueno� Mukawa� Watanabe�

Okamoto� Hosoi � Tsunekawa ����� Tucker ������ The majority of these descriptors�

including nuclear area� nuclear�cytoplasm ratio� mean nuclear density� variance� skew


ness� kurtosis etc�� are easily and rapidly measured by simple pixel counting or extraction

from image histograms�

Multi
spectral features for the analysis of cells have not gained wide support in the

literature� This is particularly true for colour
based feature extraction� and may relate

to the fact that cell colour is an arti	cial property�a result of the staining process�

However� Harms� Gunzer� Baumann � Serbouti ����� used a combination of colour

and texture
based features to subtype MACs
a�ected monocyte and lymphocyte cells

from histologically normal tissue� This in turn allowed automatically subtyping acute

leukaemic conditions without the need for human screeners to search for rare �blast� cells�

Garcia ����� and Poulsen ����� found that features based on the average intensities

of red and green 	ltered images provided a measure of discrimination between normal

and abnormal cell nuclei� Nguyen� Poulsen � Louis ����� and Noguchi ����� have

also successfully used colour
based descriptors for automated cytology� Fourier
based

methods� such as the Power Spectral Method PSM� Lendaris � Stanley ������ have

�Fourier or spatial�frequency�based methods are sometimes considered to be texture methods
�also known as the Fourier Power Spectrum �FPS� method	
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been applied to other medical applications Kruger� Thompson � Turner ����� Hall�

Kruger � Turner ������ but are generally considered to be inferior techniques Conners

� Harlow ����� Wu� Chen � Hsieh ������ These will be discussed further in Chapter ��

Arguably the most important and widely
used image descriptors for automated cyto


logy are textural features� The nuclei and cytoplasm of cervical cells are known to be

rich in texture information which cytologists regularly use for specimen screening pur


poses� Texture analysis is such an important technique that we have chosen to discuss

it in
depth in Section ����

����� Feature Pre�processing

Feature pre
processing is the technique of transforming feature data so that it can be

better utilised by subsequent processes� Neural network classi	ers� for example� often

require unbounded input feature data x � R to be within numeric limits x � R� 	 R
i�e�� between 
� and ��� or to be integer
valued� x � Z� Other classi	ers may require

binary
valued data� x � f�� �g� Other methods of pre
processing modify distribution

statistics of the feature data� such as normalising the mean or variance of all features�

While the exact method of pre
processing is not important� it is generally necessary to

ensure that order
relationships between data are maintained� i�e��

x� � x� � x�� � x��� ����

where x� is the numerical value of x after pre
processing�

As we will explain later� our feature selection and classi	cation model relied on

feature data whose distributions were� ideally� of a Gaussian form� These parametric

models are based on normal
theory where assumptions are made about the distribution

of the class
conditioned feature distributions� For methods which assume normality�

or bene	t from normality� it is often advantageous to transform feature data using

normality transforms� While it is known that minor departures from normality are

generally not detrimental to classi	cation processes derived from normal
theory
based

decision rules McLachlan ������ we could not guarantee that our feature distributions

used throughout this thesis did not deviate signi	cantly from Gaussian� To make our

features more Gaussian� we applied preprocessing via a normality transform before dis


criminant analysis and classi	cation� We transformed all features using a technique

called the Ladder of Powers Velleman � Hoaglin ������ We will discuss this technique

in detail in Section ������

To demonstrate the bene	ts of using near
Gaussian data for normality
based clas
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si	ers� we show the classi	cation results of highly non
Gaussian and Gaussian feature

data in Figure ����� Classi	cation errors for highly non
Gaussian feature data a�� were

reduced from �� to �� after the data was made more Gaussian b�� We attained this

decrease in error because the modelled PDFs of the feature data now closely matched

those of the actual PDFs�
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Figure ����� Scatter plots for feature data� before and after normality transformation
via equation ����� in Chapter �� a� A total of �� misclassi	cation errors resulted when
using non
Gaussian data� b� After normality transformation of the data� misclassi	ca

tions were reduced to ���

����� Feature Selection and Discrimination Measures

Given the pattern recognition system�s requirement of classifying an object into one of

several classes� it is necessary for us to capture information about the object� by ex


tracting descriptive features� Generally� there are few limits on the number of feature

measures which can be extracted from an object� However� it is common for many of

these features to contain little or no discriminatory information� By the term �discrimin


atory� information� we mean information which is class
dependent� That is� information

which is similar for objects of the same class membership� but which di�ers for objects

of alternate classes� Discriminatory information is essential to the success of classi	ca


tion processes� It is of vital importance in order to accurately de	ne the di�erent class

distributions for each feature� and to minimise the overlap or common areas between

these distributions� By removing non
discriminatory features from the feature set� we
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can achieve two very important advantages� Firstly� the resulting subset of features

can be be processed in less time� simply because there is less data to process� Also�

data storage requirements are similarly reduced� But more importantly� the reduction

in feature set size can increase the estimation accuracy of the class
conditioned feature

distributions� This is related to the �curse of dimensionality� Bellman ������ and the

�peaking phenomenon�� and will be discussed further on page �� of Chapter ��

The objective of feature selection is to select a minimal set of features which provide

� high discrimination between object classes� and

� accurate estimation of the real class
conditioned distributions from which the fea


tures were drawn�

The 	rst problem we face when choosing an optimal subset of features is the num�

ber of possible subsets which we should ideally� investigate� For example� for an

NV 
dimensional feature set� there are �NV � � possible feature subsets� of cardinal


ity �� � � � � NV � Assuming an initial population of �� features� we have over � million

subsets from which to choose!! Even if we know a priori a suitable subset cardinality�

say v features� there are still NV !�NV �v�! v!� feature subsets of cardinality v� We can

see that� even for small values of NV � the problem of determining the worth of each fea


ture subset becomes considerable� The method of determining the worth of feature sets

presents us with a second problem� While it is best to optimise the worth of a feature

subset based on minimising classi	cation error rate� the computational cost of explicitly

calculating such error rates is prohibitive� Fortunately� a number of attractive statistical

methods are available which can address both of the aforementioned problems�

Discrimination measures

As an alternative to the direct determination of error rate� we can use more computation


ally tractable methods� called class�separability measures� to estimate it� These methods

include error probability measures� probabilistic dependence measures� and interclass

distance measures� among others Hand ������ While the exact form of measurement

for each method di�ers� they all attempt to assign a 	gure
of
merit to a feature� based

on how �dissimilar� the class
conditioned distributions of the feature are� One measure

of dissimilarity is the amount of overlap between the class
conditioned distributions�

with less overlap meaning more dissimilarity� Other measures quantify the separation

between the distributions� normalised by the spread or variance of each distribution�

Probabilistic distance measures are some of the most commonly applied methods of

discriminatory power measurement� and attempt to quantify the probabilistic distance



���� PATTERN RECOGNITION ��

between two density functions� The greater this distance� the less overlap between the

densities� and the smaller the probability of classi	cation error� Of the many probab


ilistic distances measures de	ned in the literature Cherno�� Divergence� Mahalanobis�

etc�� one of the most widely used is the Bhattacharyya metric Bhattacharyya ������

which takes the non
parametric form�

JB # � log
Z
$pxj���pxj���% ��dx� ����

where random variable x # $x�� � � � �xNv% represents a set of candidate feature vectors

and pxj�c� is the class
conditioned probability density of x for class �c� In simple

terms� this is a measure of the amount of overlap between two class
conditioned PDFs�

The square root of the product of the overlapping areas is integrated over the domain of

the two PDFs� The larger the area of overlap� the smaller the discrimination measure�

When the class
conditional distributions of the features are known and of Gaussian

form� we can express equation ���� in closed form as�

JB #
�

�
�� � ���

T$�� &��%
���� ���� &

�

�
log

�
� j���� &���jq

j��jj��j

�
� � ����

where �c and �c are the mean vector and covariance matrix of x for class c� and

j'j represents the determinant of '� We have used the Bhattacharyya discrimination

measure extensively throughout the course of our research� It is a parametric method�

and provides the most robust estimates when the feature distributions are of Gaussian

form� With this in mind� we pre
processed our features prior to feature selection and

classi	cation� using the ladder of powers normality transform introduced in Section ������

Feature�set search algorithms

Having reviewed suitable� computationally light methods of evaluating feature
set worth�

we will now discuss the considerable problem of choosing an optimal subset of features

from a pool of possible candidate features� We should point out that� for the special

case where all features are normally distributed� independent� and have equal covariance

matrices� we can select the optimal feature set of cardinality v by choosing v features with

the highest univariate discriminatory power Hand ������ However� features meeting

the above restrictive criteria are extremely uncommon� In general� we cannot select

feature sets based on their univariate discriminatory power�

As we showed previously� an exhaustive search of all possible feature subsets becomes

computationally prohibitive when the cardinality of the feature pool is much above ���



���� PATTERN RECOGNITION ��

An alternate search method is the branch�and�bound algorithm Hand ����� Hand �����

Kittler ����� Yu � Yuan ������ The branch
and
bound method yields the globally op


timal feature subset without the need to explicitly evaluate all possible subsets� However�

even this method of evaluation is computationally prohibitive for large feature sets� For


tunately� several other methods exist which produce an acceptable� albeit sub
optimal

solution� by searching only a subset of all possible feature subsets� Examples of these

are�

� sequential forward selection SFS�� which� starting with a subset containing only

the best individual feature� successively adds one feature at a time to this subset

Hand ����� Kittler ������ One weakness of this method is that� once selected for

inclusion� a feature cannot be removed�

� sequential backward elimination SBE�� which� starting with a set containing all

features� successively removes one feature at a time from this set Hand �����

Kittler ������ A weakness of this method is that� once removed� a feature cannot

be re
introduced to the subset�

� Min�Max feature selection� which augments the current subset of features using

individual and second
order discriminatory power considerations Kittler ������

Arguably one of the best sub
optimal feature
set search methods is the plus l
take away r

algorithm Kittler ����� Kittler ������ This algorithm overcomes inherent weaknesses of

other sub
optimal methods mentioned above i�e�� the �nesting� problem� by alternately

augmenting and depleting the current subset� Each augmentation adds l features to

the current subset by applying sequential forward selection l times� while each depletion

removes r features by applying sequential backward elimination r times� While being

a sub
optimal method� Kittler ����� reported that methods which forward
select and

backward
eliminate several variables simultaneously were better than methods such as

SFS and SBE which add or remove only one variable at a time� He also concluded that

the combination of forward
selection and back
elimination almost always gave optimal

results and computationally was comparable to less optimal approaches� For these

reasons� we have chosen to use this method of feature selection throughout our work�

More recent methods� such at �oating search by Pudil� Novovicova � Kittler �����

would be equally as applicable� Our method di�ers slightly from the above� in that we

forward
select � new features using joint discriminatory power criteria� and backward


eliminates one feature� That is� rather than applying SFS twice� we add the pair of

features which maximises the discriminatory power of the resulting set� This facilitates

capturing feature subsets with exhibit higher
order discriminatory power� We begin
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with an exhaustive search for the best feature pair� and then augment this subset using

the add
��subtract � selection method� The discrimination measure used to determine

feature set discriminatory power was the parametric Bhattacharyya distance measure

de	ned in equation �����

����� Classi�cation

After selecting a suitable set of features whose class
conditioned statistics di�er between

the di�erent classes of objects� we now need to design a suitable classi	er which can be

used to classify new� previously unseen� objects� We also need to determine the gen


eralisation performance of this classi	er by estimating the probability of classi	cation

error� i�e�� the probability that an unknown object is allocated to the wrong object

class� An example of such a misclassi	cation would be the allocation of a cell con


taining pre
cancerous abnormalities to the normal class� The rami	cations of such a

dangerous error are obvious� and highlight the importance of minimising such errors

through appropriate classi	er design� We previously mentioned our use of normal
based

feature pre
processing and classi	cation throughout this thesis� Our preference for para


metric methods is based on their wide
spread acceptance and use throughout the pub


lished literature� Moreover� even when the underlying assumptions of these methods are

not strictly correct� we generally see minimal detrimental e�ect on their performance

James ������

Discriminant analysis and discriminant functions

The main goal of discriminant analysis is to derive a mathematical rule� known as a

discriminant function� which can be used to separate the di�erent groups of objects�

e�g�� the groups of normal and abnormal cells� The discriminant function is governed

by statistical parameters drawn from populations of object features from known classes�

It takes as an input� a vector of feature values extracted from a yet
to
be
classi	ed ob


ject� Its output is usually a scalar value which can be used to determine the likely class

membership of the object� In e�ect� a discriminant function de	nes an n
dimensional

decision surface which separates the class
conditioned distributions of features in this

n
dimensional feature
space� The two most common types of discriminant functions are

Linear Discriminant and Quadratic Discriminant functions� Both of these are Bayes

classi	ers and assume that the class
conditioned feature data are multi
variate normally

distributed� However� linear discriminant functions impose a restriction of equal class


conditioned covariance matrices� while this restriction is relaxed for quadratic discrim


inant functions� In Figure ����� we show typical examples of a linear and a quadratic de
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cision boundary� calculated from simulated bivariate Gaussian
distributed feature data

with unequal variance
covariance matrices�
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Figure ����� Two examples of decision boundaries in bivariate feature
space� a� Linear
discriminant boundary� b� Quadratic discriminant boundary� We can see that the
quadratic discriminant better models the true line of equal class
conditioned probability�

A quadratic decision function for assumed multivariate
normal feature distributions

with unequal variance
covariance matrices can be expressed as Gonzalez � Woods

������

dcx� # logP�c � �
�
log j�cj � �

�

h
x� �

c
����

c
x� �

c
�T
i
� c # f�� � � � � Ncg� ����

where dc is the discriminant measure for class c� P�c is the class
conditioned prior prob


ability� �c is the covariance matrix� �c # $��� � � � � �Nv % is the multivariate mean feature

vector� and x # $x�� � � � � xNv% is the pattern vector to be classi	ed� The resulting de


cision boundary d� # d� is of hyperquadric form� because no terms in x higher than the

second power appear in the equation� By constraining the class
conditioned covariance

matrices to be equal� �c # �� c # �� � � � � Nc� equation ���� reduces to

dcx� # logP�c � �
��c�

���Tc & x����Tc � ����

The term �
� log j�cj in equation ���� is now class
independent and represents a constant

o�set for all classes� As such� it is not required in equation ����� The highest power of

x is now �� representing a hyperplane in N�dimensional feature
space� as suggested in

Figure ����a��
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The quadratic discriminant function of equation ���� represents an optimal classi	er

for feature data which are truly multi
variate Gaussian� For real data� which is rarely

multi
variate Gaussian� there remains the question as to what degree the classi	cation

accuracy is a�ected when the above assumptions are not met� According to the literature

Lachenbruch ����� Seber ������ quadratic discriminant functions are more sensitive to

departures from multi
variate Gaussian in high
dimensional feature spaces� than linear

discriminant functions� However� it is known that minor departures from normality

are generally not detrimental to classi	cation processes McLachlan ����� Hjort ������

For non
normal feature data� normality transforms can be helpful in obtaining near


normality of feature�s class
conditional densities� Moreover� to quote McLachlan ������

Even if a transform does not induce ��� near normality� it will have played a

useful role if it has been able to produce good symmetry in the data�

Of further consideration is the fact that linear discriminant functions are sensitive to

inequalities in class
conditioned covariance matrices Lachenbruch ����� Seber ������

Quadratic discriminant functions exploit such inequalities and allow more optimal de	n


ition of decision surfaces� leading to the possibility of lower classi	cation error�

Based on the above considerations� we chose the quadratic discriminant function of

equation ���� as our classi	er throughout this thesis� While there is a marginal increase

in computational expense for quadratic functions and associated normality transforms�

we feel the bene	ts of lower error probability are of much greater importance�

����	 Evaluation of classi�er performance

In the previous sections we overviewed the necessary sub
blocks of a typical pattern

recognition system� and introduced further detail and justi	cation for our selection of

speci	c sub
block algorithms� In this section we will consider methodologies for assessing

the classi	cation performance of our system�

Measuring classi	er performance generally entails quantifying how well the system

classi	es objects� and is usually expressed in terms of misclassi	cation rate or error

rate� i�e�� the rate at which an object is allocated to the wrong object class� Classi	er

performance is normally quanti	ed in terms of apparent error� or estimates of the real

or true error� Both measures have an associated variance which indicates how close the

estimates are to the true classi	cation performance� Measuring apparent error usually

results in an optimistically biased estimate� because the classi	ed data used is the same

as that which was used to design the system� This training set data is only a subset

of the real population� and cannot possibly represent the total variability of the real
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population� Thus� statistical parameters extracted from training set data are only es


timates� and contain inherent �noise� or estimate errors� Designing a system based on

minimising training set classi	cation error runs the risk of over�training� The classi	er

learns characteristics which may only be present in the training set� and in so doing�

loses its generalisation ability on unseen data� We usually prefer to estimate real error�

because it provides an indication of how well the system will perform in practice� i�e��

its generalisation performance using real� previously unseen data�

Estimating the real classi	cation performance can be achieved by a number of eval


uation strategies�

� Holdout Weiss � Kulikowski ������

� Cross
validation Efron ������

� Leave
one
out and jackknife methods Quenouille ������

These and other methods have been extensively reviewed in the literature Bradley

����� Hand ����� Kittler ����� Lachenbruch ����� Seber ����� James ����� Weiss �

Kulikowski ������ We will now give a short overview of these methods� as detailed in

Bradley ����� and Weiss � Kulikowski ������

Holdout

Holdout is particularly suitable for large datasets� e�g�� for dataset size Ns � �����

where the computational burden of other methods becomes prohibitive� It involves par


titioning a dataset containing measures fromNs objects� into a training set of nmeasures

and a test set of Ns � n measures� We train the classi	er system using the training set�

and then estimate the real error rate by classifying the test set� Common training�test

partitions are ������� or �������� According to Weiss � Kulikowski ������ the real

error estimate obtained using this method is pessimistically biased� However� the estim


ate will converge to the real error for large dataset sizes� e�g�� when there are over ����

examples in the test set�

Cross�Validation

The n
fold cross
validation method Efron ����� Weiss � Kulikowski ����� is par


ticularly suitable for dataset sizes of ��� � Ns � ����� We randomise the dataset

and partition it into n approximately equal test sets� resulting in each test set having
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approximately Ns�n members� For each test set� we form a training set consisting of

the other n � � test sets� We then use this training set to train the classi	er system�

The performance of the resulting classi	er is then evaluated on the test set� We repeat

this process n times� once for each of the n test sets� As a result� each and every ex


ample in the dataset is used only once to test the classi	er� Also� an example is never

tested on a system that it helped train� We obtain estimates of the real error rate by

averaging the error rates of all n trials� Also� we can obtain an estimate of the error

variance from these n trials� According to Breiman� Friedman� Olshen � Stone ������

��
fold cross
validation gave a good trade
o� between error estimation and computa


tional complexity� It provides an almost unbiased estimate of the error rate� but with

high variance when used on small datasets� Fortunately� error estimate variance can

be reduced by repeating the cross
validation process several times� each time using a

di�erent randomised partitioning i�e�� re
sampling��

Leave�One�Out

Leave
one
out strategies� including jackknife� are usually applied to datasets contain


ing less than ��� members� These methods are reviewed in
depth in other published

literature Weiss � Kulikowski ������ so we will limit our explanation to the basic prin


ciples of leave
one
out� Given a dataset of Ns samples� we train the classi	er using Ns��

samples� and test the system using the remaining sample� We repeat this process a total

of Ns times until all examples have been tested once� Note that this is an extreme case

of n
fold cross
validation� where n # Ns the number of samples in the dataset�� Once

again� the error estimate is almost unbiased but it may contain high variance for small

datasets�

In Table ��� we show how the computational complexity increases from the holdout

method to the leave
one
out method� We also detail how the training and test set

partition sizes vary for each method�

Holdout n
fold CV Leave
one
out

Training set n Ns � Ns

n
Ns � �

Test set Ns � n Ns

n
�

Iterations � n Ns

Table ���� Comparison of dataset partition sizes and number of classi	cation trials for
holdout� cross
validation� and leave
one
out estimators of real error rate�
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��� Texture Analysis in Automated Cytology

Texture is a characteristic that is present in almost all images� and is considered to be

one of the most important properties used in the identi	cation or classi	cation of image

objects or regions� While the meaning of the term texture is di�cult to concisely de	ne� it

has been described in several qualitative ways� Haralick� Shanmugam � Dinstein �����

and Davis� Johns � Aggarwal ����� described texture as the coarseness� homogeneity�

and orientation of image structure� Julesz ����� suggested that texture characterises

the spatial relationships between image intensities or tones� Pressman ����� proposed

that texture is based on the variation of grey levels in a neighbourhood of a pixel�

where the size of the neighbourhood depends on the size of the fundamental textural

element� known as a texton Julesz ����� Julesz � Bergen ����� or texel� According

to the Collins English Dictionary� texture is the structure� appearance� and feel of a

woven fabric the surface of a material� especially as perceived by the sense of touch the

general structure and disposition of the constituent parts of something��� Makins ������

Texture analysis is the quanti	cation and use of such image texture properties� It is

the basis of many image processing operations such as classi	cation� segmentation� and

synthesis of textured images�

Texture analysis methods can be loosely grouped into two classes�structural or

statistical� Structural approaches generally model a texture as the deterministic or

stochastic placement of texture primitives textons�� with the emphasis on texton char


acterisation such as size and shape�both local properties� This approach can fail

where texton primitives are not readily identi	able� which is generally so� Statistical

approaches focus on the global spatial relationships between intensity variations� and

often fail to capture local properties of the texture� Texture characterisation requires

both local texton primitive� and global spatial organisation� description� Although

neither structural nor statistical methods satisfy this requirement fully� both classes of

method� particularly statistical methods� have been widely accepted over the past two

decades�

The statistical methods can be grouped into 	ve general categories�

� gradient
based methods which de	ne texture properties in terms of absolute dif


ferences in grey levels between neighbouring image pixels�

� frequency
based methods which model texture in terms of power spectra or auto


correlation criteria�

� mathematical morphology and granulometry
based methods which characterise
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texture by the relationship between an image�s connected components following

morphological 	ltering operations and�or iterative thresholding�

� co
occurrence
based methods which model the statistical relationships between

pairs of spatially separated image pixels�

� Markovian methods which which model higher
order statistical relationships between

all elements in a de	ned neighbourhood�

Over the last �� years� the most proli	c and promising works in the area of automated

cytology have been in the area of texture analysis of the nucleus� This is not surpris


ing� As we mentioned earlier� pre
cancerous abnormalities are manifested in visual and

subvisual changes in cell characteristics� including changes in chromatin content of the

nucleus� In fact� it is generally believed that the initial signs of cell neoplasia 	rst appear

in the nucleus� Because nuclear chromatin and its spatial arrangement can be viewed as

a type of texture� the use of texture analysis for detecting pre
malignant abnormalities

in cells has seen widespread application�

Very little published research exists for the use of gradient
based texture analysis

for automated cytology� possible due to the method�s inherent susceptibility to noise in

the image� One published work known to us was by Abmayr� Burger � Soost ������

who used descriptors extracted from Laplacian 	ltered images to classify Papanicolaou

stained cervical cells into four classes�basal� metaplastic� dyskaryotic� and carcinoma in

situ� More speci	cally� they computed histograms of the 	ltered images� and extracted

statistical descriptors such as mean and variance to discriminate between normal and

abnormal cells� According to Abmayr et al� ������ classi	cation accuracy of their

�TUDAB� system improved when these features were added to their existing feature

database� Using cross
validation� they achieved a correct classi	cation rate of ������

which improved to ����� for a two
class case�

Kopp� Lisa� Mendelsohn� Pernick� Stone � Wohlers ����� used features derived

from optical Fourier transforms to detect cervical cell abnormalities� They attained false

positive and false negative rates of ��
��� using a small database of ��� cells� Fourier

descriptors were also used by Wang � Abmayr ����� to classify mouse L 	broblasts

into three classes � G�� S� and G�� Using a total of �� Fourier features� they attained a

correct classi	cation rate of over ����

We have seen a marked increase in morphology
based image processing over the

last �� years� due to the growing popularity of this area among researchers� Salem


bier� Gasull� Marques � Sayrol ����� applied image morphology to the automated

detection of spermatozoa� They used a sequence of morphological 	lters to remove im
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age artifacts and enhance image contrast� This facilitated the successful application of

simple and rapid techniques such as thresholding for detecting individual spermatozoa�

Young� Verbeek � Mayall ����� used granulometry
based features to characterise the

amount and arrangement of chromatin near the nuclear
cytoplasm interface� The four

de	ned features quanti	ed heterochromatin homogeneity� condensation� margination�

and clump size distribution� In Walker � Jackway ����� we used a related technique

to extract features from images of regularly stained cervical cells� Our features were stat


istical descriptors from distributions of nuclear heterochromatin and euchromatin clump

morphology area� circularity� etc��� extracted from sequentially thresholded grey
scale

images� Tanaka et al� ����� thresholded grey
scale images of cervical cells to produce

binary images containing connected components heterochromatin clumps�� The area

of the sum of the individual components was then used as a feature in their CYBEST

automated cytology system� One of the most prominent researchers in the area of cell

analysis by image morphology is Fernand Meyer� He has published a large quantity of

research discussing morphological approaches to all facets of automated cytology� in


cluding cell 	nding� segmentation� pre
processing and feature extraction� Such papers

include Meyer ����a�� Meyer ����b�� Meyer � van Driel ������ Meyer ������ Meyer

������ and Meyer � Beucher ������

Of all the texture methods� it is perhaps the Markovian methods which have received

the widest application to cell texture analysis and have demonstrated the most promise�

Markovian methods are those which model a texture� or extract texture descriptors�

based on the interdependence among image pixels in localised spatial neighbourhoods�

This interdependence is commonly expressed as transition probabilities the conditional

probability of occurrence of grey level g�� given that grey level g� has occurred�� or as

co
occurrence probabilities the joint probability of occurrence of pixel intensities�� Ex


amples of Markovian methods include Markov chains� Markov Random Fields MRFs�

multi
dimensional generalisations of Markov chains� and the closely related Gibbs Ran


dom Fields GRFs�� and co
occurrence
based methods�

MRF and GRF theory has been extensively reviewed in the literature� and we refer

the reader to works by Besag ������ Besag ������ Chen ������ Cross � Jain ������

and Dubes � Jain ������ Of particular interest is new research by Elfadel � Pi


card ������ whose aura measure provides a generalised model framework which links

GRF�MRF� grey
level co
occurrence� and the correlation matrix� The success of random

	eld models generally relies on large image domains for accurate modelling�something

which is commonly not available for cell images� due to the limited spatial resolution of

existing imaging devices� and the small physical size of cell nuclei� For this reason� the

number of published works using MRF techniques for cytological analysis are limited�
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We have� however� trialed a combination of co
occurrence and MRF features for classi


fying regularly stained cervical cells Walker� Jackway � Lovell ������ We found that

MRF features alone were poor discriminators of normal and abnormal cells� However�

they appeared to possess higher
order discriminatory power when combined with co


occurrence descriptors� This may be because the MRF captured third and higher
order

statistics� which complemented the second
order statistics captured by the co
occurrence

method� Cross
validated classi	cation of a small database of cells attained a correct clas


si	cation rate of ��� using three MRF and two co
occurrence features� We believe this

study is the 	rst to use MRF features for classifying regularly stained cervical cells�

In this thesis we identify adaptive methods of analysis based on an assumed MRF

model for the texture� For MRF and its related GRF� a complete statistical model

within a de	ned window or neighbourhood is su�cient to represent the texture� This

has been recently demonstrated by Paget � Longsta� ������ who synthesised highly

realistic textures� visually identical to textures from which the model estimates were

derived� They achieved this by using an MRF model to capture the third
order local

conditional PDF LCPDF� of grey levels� This suggests that� for texture synthesis� a

third
order LCPDF model is su�cient to characterise a large proportion of textures�

Paget� Longsta� � Lovell ����� also showed that a second
order MRF model was

su�cient for accurately classifying textures� Their model estimated the LCPDF of a

pixel�s grey level Is� based on its eight nearest neighbours Ns # fr j jjs� r�jj� � �g�
where s and r are valid image co
ordinate pairs� They determined the LCPDF P Is j Ns�

directly from estimates of the local joint PDF P Is�Ns�� As an example� the LCPDF

P Is j Is������� under the neighbourhood constraint Ns # s& �� �� shown in Figure

����a� is determined from the joint PDF P Is� Is������� shown in Figure ����b� by the

equality

P Is j Is������� # P Is� Is�������P
i�Ng

P i� Is�������
� ����

It is interesting to note that the numerator in equation ���� is simply the grey
level

co
occurrence estimate for the texture� This establishes a link between this subset of

MRF models and the GLCM method of Haralick et al� ������ Because of the sim


pler GLCM neighbourhood de	nition pair
wise joint
probability modelling�� the co


occurrence method is an incomplete characterisation of texture� However� in many

cases this is su�cient for texture classi	cation� Moreover� co
occurrence methods have

considerable advantages over MRF modelling� including computational e�ciency� and

better model estimate accuracy� This is especially so for images of small spatial domain�

such as cell images� where it is di�cult to accurately estimate higher
order spatial rela


tionships necessary for most MRF�GRF models�
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Co
occurrence
based methods such as GLCM are second
order statistical methods

which model the joint probability of occurrence of pairs of image properties� Such

image properties include pixel intensities� intensity variance and entropy� and gradient

descriptors� Co
occurrence
based methods are fundamental to the work contained in

this thesis� and for this reason we provide an in
depth discussion of these methods in

Chapter ��

��� Thesis Background and Outline

It may be helpful to the reader for us to explain the motivations for the work we will

present in this thesis� This work has been conducted within the Cytometrics Group�a

multi
disciplinary team of CSSIP researchers with the task of implementing an auto


mated analysis system for screening cervical smears for pre
cancerous abnormalities�

The motivations for this research are many
fold� but are mainly based on the huge

bene	ts such a system can bring to society� These include signi	cant cost savings to

the community� allowing funding of other important public health initiatives� and a

reduction in mortality due to earlier detection and better prognostic leads�

The Cytometrics Group focuses on applying so
called �smart algorithms� to detecting
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neoplasia and MACs in regularly stained cervical smears� Such algorithms are not only

of bene	t to new analysis systems� but can also enhance the performance of existing

screeners� The group�s recent change in focus to MACs detection is an important one

of great medical and social signi	cance� This is because MACs facilitates the possible

application of our research to detecting other forms of cancer that exhibit the �	eld

e�ect� described in Section ���� In the future� it may be possible to detect pre
cancerous

abnormalities in areas of the body� simply by the MACs analysis of a sample of saliva�

or a scrape of cell tissue from the mouth�

Applying our algorithms to Pap
stained cervical smears is a relatively new area of

research� It was generally considered that the variability of staining density produced by

the Pap stain would mask any existing� often minute� di�erences in chromatin arrange


ment in pre
malignant cell nuclei Zahniser et al� ����� Wittekind� Hilgarth� Kretschmer�

Sei�ert � Zipfel ������ For this reason� the vast majority of published literature on cell

texture analysis used Feulgen and other stoichiometric staining chemicals to facilitate

quantitative measurement of chromatin properties� By doing so� the direct applica


tion of the results of such research to cervical cancer screening programmes which use

the widely
accepted Papanicolaou staining process is severely limited� We have there


fore investigated the application of image cytometry to the problem of cervical cancer

detection in Pap stained smears� Our initial investigation Walker� Jackway� Lovell �

Longsta� ����� into the usefulness of the Pap stain produced encouraging results� which

we reproduce in Figure ����� We can see from this 	gure that both normal and abnormal

cell classes are� to a large degree� well clustered and separated�

One of the major impediments to our research e�ort has been the lack of an available

database of classi	ed cells for algorithm training� Compiling a database of cells at

suitable spatial and photometric resolution is an arduous task involving hundreds of

hours of work by researchers and trained cytologists� The resulting database is of such

commercial value that its free availability to other researchers becomes unlikely� We have

therefore compiled our own database of cytologically normal and abnormal cells from

regularly stained cervical smears over the three and a half year course of our research�

The selection of cell specimens was made by a trained cytologist from the Royal Womens

Hospital� Brisbane� Towards the end of our research� a second� much larger database of

normal and diagnostically abnormal cells was made available by Oncometrics Imaging

Corporation	� These databases were unsuitable for investigating MACs� and therefore

the work contained in this thesis is based on detecting diagnostically abnormal cells

so
called rare event detection�� However� as we will show in subsequent chapters� the

�Oncometrics Imaging Corporation Vancouver B	C	 Canada	
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Figure ����� Scatter plot of two GLCM texture descriptors� extracted from images of
Pap stained cervical cells�

techniques developed here are applicable to any class of texture problem� including

MACs detection�

The focus of the research contained in this thesis is on self�adaptive texture ana


lysis techniques� By self
adaptive techniques� we mean algorithms which do not rely

on the explicit de	nition of 	xed� problem
independent feature functions� but which

use higher
level knowledge to form self
adaptive feature functions� These functions ef


fectively �tune� themselves to the speci	c characteristics of the texture classes being

analysed� As we will show in the following chapters� such techniques provide signi	cant

bene	ts to the problem of image analysis including increased classi	cation accuracy and

lower computational burden� In short� self
adaptive techniques have the potential to

extract more �useful� image information using less features� They have the unique qual


ities of being an analysis method with general applicability to any texture classi	cation

problem globally applicable�� yet provide performance which only methods speci	cally

�tuned� or tailored to a particular texture problem can attain locally optimised��

In the following chapters we introduce several new texture analysis techniques which

extract texture descriptors with enhanced discriminatory power� by either manual or

self
adaptation to speci	c texture characteristics� In Chapter �� we begin with a com
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prehensive review of co
occurrence
based texture methods� As our review will show�

they are generally considered to be the most powerful statistical techniques for analys


ing texture� Co
occurrence
based methods have received wide support from the research

community since their introduction by Haralick et al� in ����� We discuss the motiva


tions for these various methods and highlight salient features and limitations as identi	ed

by the originating authors and others�

We introduce our 	rst example of �adaptive� texture analysis in Chapter �� Here�

we investigate a recently published method of texture analysis called Statistical Geo


metric Features SGF�� We review the method� discuss its salient features� and identify

de	ciencies in terms of its application to texture analysis� One such de	ciency is the

fact that the original authors de	ned only two texture descriptors� severely restricting

the amount of information that can be extracted from texture images� We augment

this pair of features with a set of features speci	cally de	ned for the task of cell nuclear

chromatin texture analysis� We can say that these feature de	nitions have been �tuned�

or �manually adapted� to the speci	c characteristics of cell nuclear chromatin� While

this method is not self
adaptive� we introduce it to highlight the signi	cant bene	ts that

adaptive analysis can provide�

Chapter � discusses a method of improving the discriminatory power of Grey Level

Co
occurrence Matrix GLCM� features� using discrimination matrices� We investigate

where co
occurrence matrix features derive their discriminatory power� and provide a

theoretical basis for improving the GLCM method� using self
adaptive weighting func


tions which modify standard GLCM features� We then quantitatively evaluate the

performance of our method by comparing the results of cross
validated classi	cation of

cervical cell texture images� using the unmodi	ed and modi	ed GLCM features� The

proposed methodology provided up to a ��� decrease in classi	cation error�

In Chapter � we continue the theoretical analysis of discriminatory power mani


festation in co
occurrence matrices introduced in Chapter �� We bypass the use of

	xed feature functions as the basis for forming new features� because it is the 	xed

nature of these features which is the inherent weakness of all co
occurrence methods�

We present a methodology for de	ning truly self
adaptive feature functions from co


occurrence matrices� which places no reliance on previously published feature de	nitions�

Our proposed method� named Adaptive Multi
Scale GLCM AMSGLCM�� allows a nat


ural extension of feature de	nition to include information across several spatial scales�

thus capturing the bene	ts of multi
resolution analysis�

We present an alternate approach to self
adaptive multi
scale feature extraction in

Chapter �� While this technique is similar to that presented in Chapter �� it does not

rely on explicitly calculating discrimination matrices� which is essential to the successful
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operation of the AMSGLCM algorithm� Instead� we use a Genetic Algorithm GA�� and

the knowledge that such discriminatory information exists� to form self
adaptive feature

functions� Using a GA allows us to optimise feature de	nitions under speci	c criteria�

such as minimising feature correlation while maximising feature discriminatory power�

We include a complete review of GA principles and conclude with a critical appraisal of

our method�

Finally� Chapter � provides a general summary of the main aspects of the work

described throughout this thesis� and a discussion of our most signi	cant achievements�

We also o�er some comments and suggestions for further research�



Chapter �

Co�occurrence�Based Texture

Algorithms
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In Section ��� we introduced several qualitative de�nitions for the term texture� and reviewed

many of the more popular texture analysis methods found in the literature� The subsequent

chapters will deal intimately with the quantitative analysis of texture� due to its strong

applicability to cell image analysis� Here� we review a number of second�order texture analysis

methods� generally known as co�occurrence methods� for the analysis and classi�cation of

image texture� We discuss the motivations for these various methods� and highlight salient

features and limitations as identi�ed by the originating authors and others�

��� A Review of Co�occurrence�Based Texture Meth�

ods

A
s we identi	ed in Section ���� the Markovian methods of texture analysis are con


sidered by many to be the most powerful method for extracting texture information

from images� Little theoretical evidence has been presented which attempts to explain

why Markovian methods are intrinsically more powerful than� say� structural approaches

or other statistical methods� However� if empirical evidence is considered as a valid

measure of algorithm worth� then we need to look no further�the literature is ripe with

quantitative comparisons of texture methods which conclude in favour of Markovian

methods�

Among the Markovian methods� the most widely used are the co
occurrence
based

methods which attempt to characterise second
order properties of an image� Co
occurrence

is a measure of the relative frequency� or joint probability� of two image properties oc


curring� under prede	ned constraints� across the domain of the image� Image properties

are pixel intensities� variance of intensities� gradient measures etc� These properties can

be measured under constraints such as intersample spacing both magnitude and ori


entation� and other higher
order neighbourhood de	nitions windowing�� For example�

GLCM measures the probability of co
occurrence of image pixel intensities i and j� under

the spatial constraint of d pixels separation between the pixels� Another method called

the Gray Level Run Length Matrix GLRLM� estimates the probability of image pixels

with intensity i occurring in a co
linear sequence of length j� Prior to applying a texture

operator such as GLCM or GLRLM� images are generally preprocessed photometrically

using requantisation and�or histogram equalisation Section ������� This normalisation

ensures consistent co
occurrence domains independent of 	rst
order properties such as

an image�s average� maximum� or minimum pixel intensity�

In the following sections we will review seven commonly
used co
occurrence
based

texture operators� GLCM by Haralick et al� ������ GLRLM by Galloway ������ Grey
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Level Entropy and Grey Level Variance Matrices GLEM� GLVM� by Yogesan� Jor


gensen� Albregtsen� Tveter � Danielsen ����� and Yogesan� Albregtsen � Danielsen

������ Statistical Feature Matrix SFM� by Wu � Chen ������ Neighbouring Grey

Level DependenceMatrix NGLDM� by Sun �Wee ������ and Generalised Co
occurrence

Matrices GCM� by Davis et al� �������

����� Grey Level Co�occurrence Matrix

The second
order statistical technique� GLCM� was 	rst introduced by Haralick et al�

������ They were among the 	rst to characterise texture as an overall or average spatial

relationship between grey tones in an image� The roots of this proposition can be found

in earlier work by Julesz ����� who conjectured that second
order probabilities were

su�cient for human discrimination of texture�

The grey level co
occurrence matrix is determined as follows� We model a discrete

grey
scale image on a domain D 	 Z� of Ng grey levels as a �D function I � D � G�

where G # f�� � � � � Ngg� The GLCM P i� jjd� 	� is an estimate of the second
order joint

probability density function of grey
level pairs within the image� Each matrix element

is an estimate of the probability that two image pixels� separated by the intersample

displacement d� 	� have intensities i and j� where i� j � G�

P i� jjd� 	� # � fk� l �D j Ik� # i� Il� # j� jjk � ljj # d��k � l� # 	g
� fm�n �D j jjm� njj # d��m� n� # 	g � ����

where k� l�m� n are valid image pixel locations� Because of the discrete nature of digital

image intensities� P is� in fact� a discrete density rather than a continuous one� Being a

probability density� for any given d� 	�

X
i�j

P i� jjd� 	� # �� ����

and

�i� j � G� � � P i� jjd� 	� � �� ����

As an example� Figure ���a� shows a grey
scale image with a range of intensities from

� to �� The corresponding GLCM� calculated for pixel
pairs horizontally displaced by �

pixel d # �� 	 # �o�� is shown in Figure ���b�� For simplicity� we show the pixel
pair

counts the numerator of equation ������ rather than probability estimates which would

�Another unrelated method called �Generalised Co�occurrence Matrix� was introduced by Hauta�
Kasari Parkkinen Jaaskelainen � Lenz ������	
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Figure ���� An example of calculating a co
occurrence matrix from a grey scale image�
a� An image containing four intensities� b� the GLCM for a�� under the intersample
displacement constraint d # �� 	 # �o� The co
occurrence matrix element P �� �� is
determined by 	rstly scanning the image for all pixels that have an intensity of �� Of
these� we then count all which have a neighbouring pixel with intensity �� displaced �
pixel to its right d # �� 	 # �o�� There are two such pixel pairs in this image� therefore�
P �� �� # ��

Computational considerations necessitate limiting the number of image grey levels

Ng� matrix intersample displacements d� and angular displacements 	� Images are gen


erally requantised to �� or �� discrete levels using the techniques to be discussed in

Section ������ The constraint 	 is usually limited to four angles at ��o intervals� with

no distinction between opposite angles� i�e�� P i� jjd� 	� # P i� jjd� 	&
� and� therefore�

P i� jjd� 	� # P j� ijd� 	�� Often� isometric matrices are formed by averaging these dir


ectional matrices� Displacement d is chosen according to the coarseness of the images

to be analysed� and is generally varied from � to the maximum texture texton size in

the image Gool� Dewaele � Oosterlinck ������

Classical GLCM� as de	ned by Haralick et al� ������ involves extracting scalar

secondary features from the co
occurrence matrix� Haralick et al� de	ned �� feature

functions� and these were extended by Conners� Trivedi � Harlow ����� and others� A

listing of �� such feature functions can be found in Pressman ������ We also include

a comprehensive listing of features in Appendix E� We detail � of the most commonly


used GLCM secondary features in Table ���� as de	ned in Haralick et al� ������ Conners

et al� ������ and Trivedi� Harlow� Conners � Goh ������
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Table ���� Commonly
used GLCM features�

Features Equations
Energy�

P
i�j P i� j���

Entropy� �Pi�j P i� j� logP i� j��
Homogeneity�

P
i�j

�
���i�j��

P i� j��

Inertia�
P

i�ji� j��P i� j��

Correlation� �Pi�j
�i����j���

��
P i� j��

Shade�
P

i�ji& j � ����P i� j��
Prominence�

P
i�ji& j � ����P i� j��

Variance�
P

i�ji� ���P i� j�
� # �x # �y #

P
i i
P

j P i� j� #
P

j j
P

i P i� j��
� #

P
ii� �x��

P
j P i� j� #

P
jj � �y��

P
i P i� j��

GLCM features have been extensively used for texture classi	cation in a diverse

range of 	elds� Conners et al� ����� used GLCM features for segmenting high
resolution

satellite images of urban areas� while Weszka� Dyer � Rosenfeld ����� classi	ed terrain

satellite images� In medical diagnostics� Pitts� Premkumar� Houston� Babaian � Tron


coso ����� used GLCM features to identify benign and malignant regions in prostate

images� Yogesan� Albregtsen� Reith � Danielsen ����� classi	ed mice liver carcinoma�

and we have applied GLCM features to the classi	cation of normal and pre
malignant

cervical cells Walker et al� ����� Walker� Jackway � Lovell ������ Siew� Hodgson �

Wood ����� assessed carpet wear via the application of GLCM features�

Studies comparing the performance of GLCM features with other texture analysis

techniques show that GLCM is one of the most powerful methods for general texture

classi	cation Conners et al� ����� Ohanian � Dubes ����� Chen� Nixon � Thomas

����� Augusteijn� Clemens � Shaw ����� Gotlieb � Kreyszig ������ Unser ����� and

Ojala� Pietikainen � Harwood ����� concluded that while other methods� such as Law�s

Texture Energy Measures TEM � Laws ������ and Markov Random Field models� may

be superior to GLCM in some restricted cases Stallings ����� Kashyap� Chellappa �

Khotanzad ������ most fail when applied to other more general texture problems�

Conners � Harlow ����� have shown� both theoretically and experimentally� that

GLCM is a more powerful technique than Grey Level Di�erence Matrix GLDM �

Weszka et al� ������� Grey Level Run Length Method� and the Power Spectral Method

PSM � Lendaris � Stanley �������� They showed that the group of Markov texture

�also known as the Fourier Power Spectrum �FPS� method	
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pairs successfully discriminated by the other three methods were all subsets of the group

of Markov texture pairs that could be discriminated by GLCM� However� they also

presented examples of second
order textures which could not be discriminated by GLCM

features� particularly texture pairs that were ���o rotations of each other� The other

texture operators were similarly limited� However� this is not strictly a limitation as

such� because the algorithm used was designed to treat orientations of 	 and 	&���o as

equivalent� but can be designed to treat them as distinct�

Weszka� Rosenfeld� Carton� Kirby � Mohr ����� had previously trialed the same

texture operators on aerial images� with similar results� The only exception was that

they found GLDM to be as powerful as GLCM� However� Conners � Harlow �����

later showed this was due to the limited number of GLCM features used�

Ohanian � Dubes ����� demonstrated that GLCM features perform better than

fractal� MRF� and Gabor 	lter features in classifying a wide range of texture images�

including fractal� Gaussian MRF� and natural images� Error rates were ���� GLCM��

��� fractal�� ��� Gabor� and ��� MRF�� They also showed that further decreases

in classi	cation error to ���� could be attained by using features from all four texture

methods� This reveals GLCM�s inability to capture all texture information� due to

limitations in its feature de	nitions� and the fact that it only captures second
order

texture information�

Chen � Dubes ����� found that MRF performed better than GLCM� However�

Ohanian � Dubes ����� speculated that the success of MRF was dependent on large

image sizes for adequate modelling�a very restrictive requirement in many image pro


cessing applications� Indeed� we have found MRF features to be very poor texture

discriminators when used independently� for cell texture classi	cation where small im


ages are the norm Walker� Jackway � Lovell ������

According to Ohanian and Dubes� GLCM has two drawbacks�the large number of

potential features which can be extracted� and the lack of any theoretical guide to which

features to extract for a particular problem� We address both these issues in Chapters

� and ��

A study by Wu et al� ����� found GLCM ��� error rate� more e�ectively discrim


inated ultrasonic liver images than PSM ��� error rate�� GLDM ��� error rate� and

TEM ��� error rate�� Wu et al� introduced a fractal
based approach� claiming its

performance ��� error rate� was superior to that attained with GLCM� However� we

	nd their comparison methodology �awed� They extracted GLCM features at only one

spatial displacement� limiting analysis to one resolution� but for fractal analysis� they

extracted features at four resolutions� They also claimed that the computational burden
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of GLCM was intolerable� This was because they did not requantise the �
bit grey
scale

images� which meant they had to calculate excessively large ���  ��� co
occurrence

matrices� Moreover� the resulting sparse matrices would not have allowed an accurate

estimate of the true underlying joint PDF of grey
level pairs��

����� Grey Level Run Length Matrix

Another popular method for extracting co
occurrence
based texture descriptors is the

GLRLM method introduced by Galloway ������ Matrix calculation is computationally

e�cient� with the number of calculations required being directly proportional to the

number of image pixels� A grey level run is a group of consecutive� collinear image

pixels having the same grey level� The matrix elementMi� j� quanti	es the number of

times a run of j pixels length occurs with an intensity of i� A series of matrices can be

determined under angular constraints which de	ne the direction of the run� Figure ���

shows an example of the GLRLM method�
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Figure ���� Calculating Grey Level Run Length Matrix element values for �o and ��o

orientations� In the image� there are two horizontal runs of intensity � with a length of
� pixels� Thus� matrix elementM�� ��j�o # ��

Galloway extracted texture descriptors from the matrix using 	ve weighting func


tions analogous to those proposed by Haralick et al� ������ When extracted at four

orientations �� ��� ��� and ��� degrees�� these features attained approximately ���

correct classi	cation on the same database of terrain images used by Haralick et al�

�Wu et al	 used ��� �� image tiles giving an average of �������� � ������ pixel pairs per matrix
element	
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������ This result compares favourably with the ����� result of Haralick et al� using

GLCM features�

A theoretical evaluation by Conners � Harlow ����� concluded that GLRLM was

less powerful than the GLCM method� They also identi	ed two signi	cant weaknesses�

its susceptibility to noise� and its inability to capture important second
order grey level

transition statistics of the form P i� j�� i �# j� Weszka et al� ����� found that GLRLM

features performed the poorest when compared to GLCM� Fourier� and GLDM fea


tures� They suggested this was due to the method�s sensitivity to image noise� Yogesan

et al� ����� classi	ed four grades of cell pre
cancer using a combination of GLRLM and

GLCM descriptors� They concluded that combining features from both texture meth


ods provided lower classi	cation error than GLRLM or GLCM features alone� Christen�

Xiao� Minimo� Gibbons� Fitzpatrick� Galera
Dividson� Bartels � Bibbo ����� also clas


si	ed four classes of cell abnormality using a variety of morphological and statistical

cell descriptors� Of the twenty features trialed� a run length feature run length non


uniformity� was among the best three at discriminating the four classes of cells�

Bengtsson � Nordin ����� suggested that �GLRLM is the most popular higher


order statistic used for texture analysis�� While this may be true� the literature indicates

that this technique is best used to complement other� more powerful methods of texture

analysis�

����� Grey Level Entropy and Grey Level Variance Matrices

The GLEM and GLVM were introduced by Yogesan et al� ����� and Yogesan et al�

����� for the analysis of cell chromatin and Brodatz textures� Their motivation was

based on the premise that existing statistical techniques� such as GLCM and GLRLM�

are unable to measure the scale di�erences and grey level variation of minute structure�

They proposed co
occurrence measures based on an image pixel�s intensity� and the

intensity entropy and variance in its neighbourhood� By varying the size of this neigh


bourhood� it should be possible to capture the size di�erences of the texture elements�

Formally expressing these matrices for a neighbourhood size of w  w� the GLEM

element ei� jjw� represents an estimate of the probability of grey level i occurring with

neighbourhood entropy j� The entropy value j is de	ned as

j # �
GX
g
�

P g�  log$P g�%� P g� �# �� ����

where G is the number of image grey levels and P g� is the probability of grey level g
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occurring within a local neighbourhood of size ww� centred on a pixel with grey level

i�

Yogesan et al� de	ned nine features which extract texture information from the

GLEM� To trial this method� they extracted features from ���� prostate cells from ��

patients� and used them to classify the patients into two classes�those who were resist


ant to hormone therapy and those who were hormone
sensitive� This trial was of consid


erable importance because the two prognostic groups could not be distinguished by his


topathology or any other known means� Features from GLCM� GLRLM� and Local In


tensity Transform LIT
SNN� Albregtsen� Kanagasingam� Farrants � Danielsen �����

were also trialed� The highest correct classi	cation rate of ��� was achieved by com


bining three GLEM features and one GLCM feature� showing not only the power of

the GLEM method in this application� but also highlighting the potential of increased

discriminatory power when combining di�erent texture analysis methods�

The GLVM element pi� jjw� represents an estimate of the probability of grey level

j occurring with neighbourhood intensity variance i� where variance is de	ned in the

usual manner� The size of the GLVM variance dimension is determined by the maximum

variance in an image� Because each image will generally have a di�erent maximum

variance� Yogesan et al� suggest the following normalisation procedure�

V ar� #
V ar � V armin

V armax � V armin
�Ni� ����

where V ar and V ar� are the original and normalised variance values� and Ni is the size of

the matrix dimension representing variance� This normalisation ensures that the range

of variance values for each image are mapped to the full range of the matrix variance

index i� For example� for a �  � window� the D� neighbourhood shown in Figure ���

has a variance of ����� Therefore� after normalising the variance via equation �����

���� � V ar�� this would contribute to the estimate of GLVM element V ar�� ���

Yogesan et al� de	ned eight secondary features to extract the image structure�s size

and grey level variation information from the GLVM� Using just one feature Grey Level

Variance Ratio�� they were able to classify� with no errors� ��� cell nuclei from �� groups

� normal� � cancer� into � classes normal�abnormal� on a group
by
group basis� As

a comparison� the best individual GLRLM feature provided ��� correct classi	cation

i�e�� � misclassi	ed group��

By directly incorporating size information via neighbourhood constraints and meas


uring variance or entropy� Yogesan et al� redressed one of the de	ciencies of GLCM�

that features are global averages across entire images rather than direct measurement of

texton properties� The spatial displacement parameter d in GLCM can only indirectly
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Figure ���� Calculating variance values for GLVM� using a �  � neighbourhood� The
function F is a normalisation operation described in equation �����

capture some of this information� A more in
depth comparative study is required to

determine the general applicability of the methods to other types of texture� however�

the results as presented are encouraging�

����� Statistical Feature Matrix

The SFM is a novel attempt by Wu � Chen ����� to bypass the intermediate step

of calculating co
occurrence matrices at various displacements� followed by feature ex


traction� Each element Mi� j� of the Lr & ��  �Lc & �� matrix represents a feature

extracted directly from the image� More speci	cally� the matrix index i� j� represents an

intersample displacement� d # j�Lc� i�� at which a particular feature will be extracted�

while the matrix value Mi� j� contains the feature value� The intersample displacement

vector for each matrix element is shown in Figure ���� for the case of Lr # Lc # �� As

shown� a single matrix contains feature values extracted at several intersample lengths

and orientations�

Only one matrix need be calculated for each type of statistical feature� as opposed

to the necessity to calculate one matrix for each spatial displacement in GLCM� Wu

and Chen de	ned three features�contrast� covariance and dissimilarity�which directly

measure properties of the image� In contrast� in GLCM� it can be said that the features

measure properties of the co
occurrence matrix directly� and of the image indirectly�

The choice of Lr and Lc� which represent the maximum intersample displacement

in the image�s row and column directions� is critical� Wu and Chen state that� for

computational considerations� values of Lr # Lc � � are necessary� Larger values of

Lr and Lc extract texture information across more scales and thus lead to matrices
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Figure ���� Magnitude and orientation of intersample displacement vector d # j�Lc� i�
for each SFM elementMi� j�� for Lr # Lc # �� For example� the matrix elementM�� ��
represents a feature extracted at intersample displacementd # j�Lc� i� # d���� �� #
d��� ���

with more captured texture information� However� matrix storage and computational

overhead quickly become prohibitive�

Because the matrix itself contains feature values� no feature extraction� via weighted

sums of matrix elements� is performed� The matrix is used directly for classi	cation�

Wu and Chen measured the distance between two matrices as

D��� #

�
�X
i�j

jM�i� j��M�i� j�j�
�
�
�
�

� ����

They performed two classi	cation trials� the 	rst using �� Brodatz textures� and the

second using ultrasonic liver images� Classi	cation results were compared against those

of GLCM using �� features� and Liu and Jernigam�s spatial frequency
based method us


ing � features Liu � Jernigam ������ For Brodatz textures� SFM achieved ����� correct

classi	cation using only one feature� GLCM achieved ������ while Liu and Jernigam�s

features achieved ������ Similar results were recorded for liver texture classi	cation�

except that Liu and Jernigam�s features performed considerably worse ����� classi	c


ation�� One could again question the fairness of the classi	cation methodology� SFM

features were calculated across intersample displacements of � to � pixels� while GLCM

features were only calculated at e�ectively � pixel displacement�

The same three methods were also compared for noise performance� SFM features
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were surprisingly robust� even under strong additive noise up to ��dB signal
to
noise

ratio� At this level of noise� SFM achieved ��� correct classi	cation� compared to ���

for GLCM and ��� for Liu and Jernigam�s features�

����� Neighbouring Grey Level Dependence Matrix

Sun � Wee ����� introduced the NGLDM which models the co
occurrence of a pixel�s

intensity and properties of its surrounding pixels� under a neighbourhood constraint�

The motivation for this approach was to produce angularly
independent features without

explicitly calculating and averaging of co
occurrence matrices at several orientations�

Other properties of this method� as reported by Sun and Wee� are computational sim


plicity� and invariance under linear grey level transformation�both properties of GLCM

using �normalised� images� This method is a generalisation of the Grey Level Di�erence

Matrix of Weszka et al� ������

The NGLDM� Qk� s�� is of dimensions K  S� where K is the maximum grey level

contained in the image� and S & � is the number of pixels within a neighbourhood con


straint� The value of the matrix element k� s� is the number of times the co
occurrence

relationship exists between a pixel of intensity k and the number of its neighbours having

intensity � a being s� More formally�

Qk� s� # �
�
i� j� jMi� j� # k and �

�
q� r� j �i� j�� q� r�� � d ����

and jMi� j��Mq� r�j � a
�
# s

�
�

where i� j�� q� r� are valid image co
ordinates and Mi� j� is the image grey level at

i� j�� ��� �� is the D� distance measure� and d and a are positive integer constraints

under which the matrix is determined� The constraint d� representing neighbourhood

size� determines the scale or resolution at which the image is analysed� The threshold a

allows the measurement of homogeneity within the neighbourhood de	ned by d�

Feature extraction from the matrix is analogous to that for GLCM� i�e�� by a weighted

sum of element values� Sun and Wee proposed � features� and suggested that these

features measured properties of the image more directly than GLCM features� These

features were then used to classify terrain images� and the results were compared to

the classi	cation rates of previously
published texture algorithms which used similar

image data� NGLDM achieved ��� correct classi	cation� compared to ��� by Haralick

et al� ����� using GLCM and terrain images� and ��� by Davis et al� ����� using

GCM and Brodatz textures� However� using the same data set as Sun and Wee� Weszka

et al� ����� achieved ��� correct classi	cation using di�erence statistics and ��� using



���� A REVIEW OF CO�OCCURRENCE�BASED TEXTURE METHODS ��

GLCM features� In a comparison of texture algorithms for analysing carpet wear� Siew

et al� ����� found that NGLDM had strong classi	cation power compared to GLCM�

GLDM and GLRLM features� but said no strong conclusions could be drawn because

not all GLCM features had been trialed�

����� Generalised Co�occurrence Matrix

Davis et al��s motivation for developing the GCM technique Davis et al� ������ was

based on the premise that macrotextures cannot be adequately de	ned by information

contained in the GLCM� They suggested that� because of the large texton size of macro


textures� the GLCM predominantly captures statistics of grey level variation within the

texton� and is unable to capture spatial arrangement statistics between textons� Their

proposal was to capture spatial properties of texture edge information� via local maxima

of the gradient image of the texture� They proposed two properties�magnitude and

orientation of gradient local maxima�and extracted co
occurrence counts of these prop


erties under several spatial constraint predicates� As an example� Figure ���a� shows

the location and corresponding orientation of a texture�s local maxima of gradient� where

H�V�L�Rmean horizontal� vertical� left� and right� respectively� The corresponding GCM

under the spatial constraint of co
occurrence within Euclidean distance � is shown in

Figure ���b��

Davis et al� suggested extracting features similar to those de	ned by Haralick et al�

������ The extraction process is also the same� i�e�� via a weighted sum of GCM

elements� Davis et al� evaluated the performance of GCM features against those of

standard GLCM� In the classi	cation trial of �� samples from � classes of texture� �

GLCM features were extracted � feature functions at � spatial constraints�� compared

to �� features for GCM � feature functions at � spatial constraints�� Using pairs of

features extracted under the same spatial constraint� the GCM method achieved greater

than ��� correct classi	cation� compared to GLCM which achieved only ���� This is

a signi	cant di�erence in performance� however� once again it would appear that the

classi	cation methodology was somewhat biased� The GLCM features were rotation


invariant� being averaged across ��o or ��o intervals� The GCM features were� however�

extracted at speci	c orientations� With the majority of the chosen textures having

strongly oriented features� it is� therefore� not surprising that there was such a great

discrepancy between the classi	cation performance of the two methods� Nonetheless�

the results presented by Davis et al� are encouraging enough to warrant a more rigorous

trial�

�a similar method called Feature Frequency Matrix �FFM� was introduced by Shen � Bie ������	
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local maxima� b� GCM for Euclidean distance � neighbours� From Davis et al� ������

��� Discussion and Conclusions

Many co
occurrence
based techniques for analysing texture have been developed to ad


dress perceived weaknesses of the classic GLCM method� such as the inability to capture

localised texture information� However� no comparative studies have shown conclusively

that any one method provides superior performance to GLCM for all classes of texture�

Unfortunately� there has been no uni	ed framework for classi	cation methodologies to

permit fair comparison of algorithms� In some comparative studies� the chosen method

of evaluation obviously favoured a particular analysis technique� such as extracting fea


tures at an unequal number of scales� or the extraction of rotation
invariant features for

one technique� while using rotation
variant features for another� Only by eliminating

these discrepancies and using a standardised image database of textures� can strong

conclusions be drawn about the inherent power of the various techniques�

Several investigators attained improved classi	cation performance by combining fea


tures from competing algorithms� This indicates the inability of any one method to

capture all texture information� Some investigators attained improvement by extract


ing features across several scales� As we will clearly demonstrate in later chapters�

information important to discriminating between texture classes can indeed exist at�

and across� several spatial scales or resolutions�

Based on our review of published literature� there is strong evidence to suggest
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that the GLCM method of Haralick et al� is not only the most popular and powerful

second
order texture method� but is perhaps one of the best among both structural

and statistical approaches to texture analysis� However� a number of minor weaknesses

were identi	ed by various researchers� One such weakness is its reported inability to

speci	cally capture local image properties mentioned previously� Another possibly re


lated weakness is GLCM�s inability to extract all texture information from co
occurrence

matrices� as mentioned in the previous paragraph� This appears to be due to GLCM�s

	xed feature functions� and is the reason why many investigators report improvements in

classi	cation performance when features from other texture techniques are used to com


plement existing GLCM features� To ensure maximal capture of texture information� it

is clearly an advantage to use several �complementary� texture algorithms which extract

both rotation
variant and rotation
invariant features at multiple scales� However� such

an approach may prove to be computationally prohibitive� Can we address this problem

of �maximal capture of texture information� without resorting to using complementary

algorithms" We will discuss this question in the following chapter�
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In this chapter we begin our search for so�called �smart algorithms� which use higher�level

knowledge to extract a greater amount of information from texture images� We begin by

investigating a recently published method of texture analysis called Statistical Geometric

Features �SGF	� After an initial review of the method� we discuss its salient features� and

identify de�ciencies in terms of its application to texture analysis� One of these de�ciencies�

common to most other analysis methods� is the de�nition of �xed� problem�independent

feature functions which may be unsuitable for analysing speci�c texture types� As our �rst

example of a method which uses higher�level knowledge� we de�ne new SGF features more

appropriate to cervical cell texture analysis� Those features showing discriminatory power are

further investigated to determine the cytological properties manifesting the discrimination�

While this method is not �self adaptive�� we will use it to demonstrate the signi�cant bene�ts

even manually�adaptive methods can yield over more conventional analysis methods such

as GLCM� We will show that� by de�ning features speci�c to each analysis task� we can

better target image properties which may contain important texture information� Using cell

image analysis as an example� we will show that de�ning features in this way provides a far

better understanding of textural changes within the cell nucleus upon neoplasia� than GLCM

features�

��� Introduction

R
ecently� Chen� Nixon � Thomas ����� proposed a novel set of �� features for tex


ture classi	cation called Statistical Geometric Features� This work is of immediate

interest since a thorough test by Chen et al� on all �Brodatz� textures Brodatz �����

has shown that�

� the SGF method exhibits a �substantially higher� correct classi	cation rate than

three other current methods�the Grey Level Co
occurrence Matrix Haralick

et al� ����� Conners � Harlow ������ the Fourier Power Spectral Method Liu �

Jernigam ������ and the Statistical Feature Matrix Wu � Chen ������

� the reduction in SGF classi	cation performance� due to increasing the number of

texture classes� is slower than the other methods� and

� the performance of SGF under additive noise conditions is good�

The SGF approach is to decompose a grey
scale texture image into a stack of bin


ary images by threshold decomposition� Certain geometric properties of the connected

regions foreground and background� in each binary image are then measured� and a

number of statistical parameters based on these geometric properties are computed�
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These parameters then become the extracted texture features for the purpose of texture

classi	cation�

The results of Chen et al� are based on the seemingly ad hoc selection of number of

connected regions and irregularity compactness� as the two geometric properties to be

measured from regions� Note� the �� reported features are obtained by multiplying these

properties by � foreground�background regions� and then by � statistical parameters��

There are many other possible geometric properties of connected regions in binary im


ages� therefore there seems ample scope for extending the SGF method� Further� it

should be possible to tailor the geometric properties used to maximise performance in

the particular texture classi	cation problem at hand�

In this chapter we explore such extensions to the SGF method for discriminating

normal and abnormal cervical cell images by classifying their nuclear texture� In par


ticular� we seek to identify and de	ne new SGF features which capture discriminatory

information in cell texture images� Note� this problem may be somewhat more di�cult

than the Brodatz texture problem� because although there are only two classes nor


mal�abnormal�� at the magni	cations used in cytology� the discrimination between the

two texture classes is not usually possible for humans without considerable training and

other contextual information in the image�

As we mentioned in Section ������ we previously demonstrated in Walker et al� �����

and Walker� Jackway � Lovell ����� that the GLCM method performs quite well when

classifying cervical cell texture images� We therefore use the GLCM method as our

benchmark to assess this new method�

We review the SGF method in the next section before introducing our proposed ex


tensions in Section ���� We then evaluate our new features� as well as those of Chen et al�

������ in a feature selection and cell classi	cation methodology which we describe in

Section ���� The results are presented and discussed in Section ���� and our conclusions

appear in Section ����

��� Statistical Geometric Feature Algorithm

Once again we model a discrete grey
scale image on a domainD 	Z�� of Ng grey levels�

as a �D function I �D �G� where G # f�� � � � � Ngg� The statistical geometric feature

algorithm as given in Chen et al� ����� is�

Step � A stack of binary images Ibx� y� � � is produced from Ix� y� by thresholding at

each discrete intensity level � � f�� �� � � � � Ngg� Each binary image Ibx� y� � � is
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obtained by�

Ibx� y� � � #

�
� if Ix� y� � � �

� otherwise�
����

Note� The mapping of the space of discrete grey
scale images to the space of binary

image stacks is bijective one
to
one and onto�� The term one�to�one means that

each distinct point in the image space of I an image� maps to a distinct stack

of binary images Ibx� y� � �� The term onto means every possible point in the

space of Ibx� y� � � a binary image stack� is an image of a point in I� No loss of

information occurs when representing a grey
scale image as a binary stack because

we can always recover the image without loss�

Ix� y� #
NgX
�
�

Ibx� y� for all x� y� �D� ����

For each binary image Ibx� y� � �� a group of ���
valued pixels is de	ned as being

a ��connected region if� for all pixels in the group� each pixel has at least one

�
connected neighbour within the group� Groups of ���
valued pixels are similarly

de	ned��

Step � A geometric property is measured for each �
connected region in each binary

image� These measurements are then summed or averaged across all the ���
valued

regions and all the ���
valued regions at each threshold to give a pair of geometric

properties g�� �� g�� � as functions of threshold� � �

Step 
 Several statistics which characterise the distributions of g� � across � are then

computed� These statistics are then used as texture features for classi	cation�

�

Chen et al� ����� used two sets of geometric properties� The 	rst is a simple count

of the number of connected regions�

NC�� � # the number of �
connected ���
valued regions ����

NC�� � # the number of �
connected ���
valued regions� ����

�We discuss connectivity de�nitions in Appendix C	
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The second� an average measure weighted by region size� of the irregularity or non


circularity of the regions� is de	ned as�

IRGL�� � #

PNC����
j
� IRGLj� ��NOPj� �PNC����

j
� NOPj � �
� ����

IRGL�� � #

PNC����
j
� IRGLj� ��NOPj� �PNC����

j
� NOPj � �
� ����

where index j is the jth �
connected region� NOPj� � is the number of pixels in the

jth region at level � � and IRGLj� � is the irregularity or non
circularity of each region�

given by�

IRGL #
� &

p

�max

i�I

q
xi � (x�� & yi � (y��q
jRj

� �� ����

where�

(x #

X
i�R

xi

jRj � (y #

X
i�R

yi

jRj � ����

R is the set of all indices to pixels in the region� and jRj is the cardinality� or number

of indices in the set R� We discuss the characteristics of this measure as de	ned above

in Appendix D�

The four feature functions of threshold level � de	ned above NC�� �� NC�� ��

IRGL�� �� IRGL�� �� represent statistical distributions� Chen et al� de	nes four stat


istics based on these feature functions� namely�

max value # max
�

g� �� ����

average value #
�

Ng � �

X
�

g� �� �����

sample mean #
�X

�

g� �

X
�

��g� �� �����

sample S�D� #

vuuut �X
�

g� �

X
�

� � sample mean���g� �� �����

where g� � is one of the four feature functions� This gives a total of �� features based

on the statistics of the geometric properties of the image�

We note that many other statistics could be used here� including higher
order mo


ments and rank order statistics� but in this chapter we have remained with the above
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four as proposed by Chen et al�

��� Analysis of the Proposed Method

����� Cytological Interpretation of SGF Regions

Intensity images of cervical cell nuclei represent chromatin density within the nuclei� As

discussed in Section ��� page ��� the cells undergo a staining process to allow imaging

of the normally opaque cells� During this cell staining process� chromatin is stained

proportional to its density� Areas of condensed chromatin known as heterochromatin

absorb larger quantities of stain than the more sparse euchromatin� Thus� low intensity

areas of a nuclear image represent predominantly heterochromatin� while high intensity

areas represent euchromatin� The use of threshold level � e�ectively segments the nuclear

image based on chromatin density� Figure ��� details a series of thresholded images of

a single nucleus�

image tau=1 tau=3 tau=5 tau=7 tau=9 tau=11 tau=13 tau=15

Figure ���� A series of thresholded images of a single nucleus�

Features based on ���
valued pixels are measures of nuclear regions containing pre


dominantly euchromatin� Features based on ���
valued pixels measure characteristics of

nuclear regions containing predominantly heterochromatin� For example� in cytological

terms� the feature NC� represents the number of euchromatin clumps� while NC� rep


resents the number of heterochromatin clumps� This representation is somewhat weaker

at the extreme � levels at � # � for ���
valued regions and � # Ng for ���
valued re


gions� For example� at low threshold levels� ���
valued clumps represent areas containing

not only euchromatin� but also low density heterochromatin� At high threshold levels�

���
valued regions represent areas containing all heterochromatin� plus an amount of the

higher density euchromatin� This presents a problem when analysing the results of sub


sequent feature classi	cation in terms of heterochromatin or euchromatin properties� To

minimise this problem� we calculate ���
valued features at threshold levels � # �� � � � � Ng

and ���
valued features at threshold levels � # �� � � � � Ng � �� This removes the more

�contaminated� clumps from the analysis� allowing stronger conclusions to be drawn�
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����� Re�nements to Features

The de	nition of the feature NC number of connected regions� presents us with an

immediate problem in terms of the assumptions that are generally implicitlymade about

texture� An example of such an assumption is that the texture image is stationary in a

statistical sense� or homogeneous� Or alternatively� if the image is comprised of several

textures� it is assumed that each texture area is homogeneous� More importantly� texture

measures should ideally be independent of the amount or area of texture analysed� i�e��

of window size� This is particularly important for the purpose of cell texture analysis�

where even for the highest magni	cations� the number of sample points image pixels�

is not only limited but dependent on cell size� It is di�cult to choose a 	xed window

size to analyse cell texture� due to the variability of cell�nuclei shapes� In general� the

entire cell texture image is analysed as a whole�

The feature NC is unfortunately linearly dependent on image size� That is� doubling

the image area will double the number of connected regions in the image� Because it

is well known that the size of abnormal cell nuclei are generally larger than those of

normal cells� a feature such as NC will be highly discriminatory irrespective of whether

the texture in the normal and abnormal nuclei are the same or di�erent� Thus� the

feature as proposed by Chen et al� is not speci	cally a texture measure� but a measure

of both texture and morphological area� characteristics� We propose re
expressing this

feature in a form that is independent of image size� by normalising the measure based

on image area�

NCA�� � #
NC�� �

jRI j �����

where NCA� is the number of connected ���
valued regions normalised by the image

area� RI is the set of pixel indices in the image I� and jRj is the cardinality of R� The

feature NCA� is similarly de	ned�

����� New Features Tailored to Cytologic Applications

De	ning new features speci	c to the problem at hand represents a signi	cant advant


age of adaptive methods over other methods such as GLCM� where feature de	nition is

arbitrary and independent of the analysis task� As we will demonstrate� using tailored

features not only allows better targeting of possible discriminatory properties within a

texture� but also allows much stronger conclusions to be drawn from subsequent clas


si	cation results� Prior to feature de	nition� an analysis of texture properties and an

understanding of the process which generated the texture is warranted� Such properties

dictate the kind of geometric features to be measured� As an example� we detail an
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analysis for the case of cell texture classi	cation� but similar procedures can be adopted

for many texture classi	cation problems Brodatz textures� crop identi	cation� land use�

etc���

As discussed in Section ��� page ���� the initial signs of cell neoplasia appear in

the nuclei of a�ected cells� Various cell enzymes are responsible for gene regulation�

and hence nuclear DNA and chromatin production� Changes in chromatin structure

are known to be a result of changes in this gene regulation� It is also known that

carcinogenesis can severely a�ect normal gene regulation Danielsen� Farrants � Ruth

������ resulting in not only increased quantity but also structural di�erences in the

chromatin within the nucleus Tucker ����� Komitowski � Zinser ������ It would be

reasonable to assume that cell carcinogenesis may be detectable by way of measuring

chromatin properties�

The following features attempt to measure speci	c cytological properties of the het


erochromatin and euchromatin clumps in cell nuclei� These measures are based on

properties of the cell such as the centre of gravity of the nucleus� chromatin clump size�

and clump position within the nucleus contextual information��

Firstly� we de	ne the centre of gravity of the jth clump at some threshold � as

(xj� (yj�� as in equation ����� We can de	ne the centre of gravity of the entire nucleus

as

xCOG #

X
i�RI

xi

jRI j � yCOG #

X
i�RI

yi

jRIj � �����

where RI is the set of all indices to pixels in the entire nuclear image� and jRI j is the

cardinality of RI �

We can de	ne the normalised clump displacement of the jth clump from the centre

of gravity of the nucleus as

Dj #
p



q
(xj � xCOG�� & (yj � yCOG��q

jRI j
� �����

For circular regions� we express Dj as a proportion of the radius of the region�

� Average Clump Displacement

DISP �� � #

X
j

D��j

NC�� �
�����

This feature measures the average displacement of ���
valued regions from the
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centre of gravity of the nucleus normalised for nuclear area�� The featureDISP �� �

is similarly de	ned� We are attempting to measure whether cell neoplasia results

in euchromatin or heterochromatin clumps whose displacements from the centre

of gravity of the nucleus are� on average� greater or less than that of normal cells�

Such changes have been noted in Danielsen et al� ������

� Average Clump Inertia

INERTIA�� � #

X
j

D��j�NOP��j� �

NC�� �
�����

This feature measures the average inertia of ���
valued regions� where inertia is

de	ned as the product of region area times region displacement from centre of

gravity� We are attempting to determine whether cell neoplasia results in contex


tual changes in chromatin clump distribution� That is� whether larger chromatin

clumps are displaced further from or closer to the nucleus centre of gravity� Such

changes have been noted in Danielsen et al� ������ The feature INERTIA�� �

is similarly de	ned�

� Total Clump Area

TAREA�� � #

X
j

NOP��j� �

jRI j �����

This feature measures the total area of ���
valued regions relative to the area

of the nucleus� This feature will determine whether cell neoplasia results in

more�less chromatin as a proportion of cell area Danielsen et al� ������ The

feature TAREA�� � is similarly de	ned�

� Average Clump Area

CAREA�� � #

X
j

NOP��j� �

NC�� �
�����

Measures the mean area of ���
valued clumps� Any correlation between cell abnor


mality and increased�decreased chromatin clump size will be detected by this fea


ture Danielsen et al� ����� Komitowski � Janson ������ The feature CAREA�� �

is similarly de	ned�
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��� Feature Evaluation

In the preceding sections� we de	ned a total of twelve feature functions�

�� NCA�� ��

�� IRGL�� ��

�� DISP �� ��

�� INERTIA�� ��

�� TAREA�� �

�� CAREA�� �

�� NCA�� ��

�� IRGL�� ��

�� DISP �� ��

��� INERTIA�� ��

��� TAREA�� �

��� CAREA�� �

of which eight have been de	ned to target speci	c properties of the types of texture

we are analysing� From these twelve functions� we extract the four statistical features

de	ned in equations ���� to ������ giving a total of �� feature measures� Each of these

feature measures can be considered as an average measure across all threshold levels � �

This averaging process may in fact hide discriminatory power at speci	c threshold levels�

To determine whether discriminatory power is present at particular threshold levels� we

also choose to analyse each of the twelve feature functions at each of the threshold levels

� �

����� Cell Database

Our data consists of a small set of ��� cells captured from �� cervical slides� processed

using ThinPrep R� slide preparation� and regular Papanicolaou staining� Image capture

was at a magni	cation of ���� giving a spatial resolution of �����m per pixel� We

captured a total of �� cells� with abnormalities ranging from mild neoplasia CIN�� to

Carcinoma in situ CIS�� from �� abnormal slides� while �� normal cells were captured

from both the �� abnormal and � normal slides� We note that some of the normal cells

from abnormal slides may be MACs a�ected� However� MACs results in such minute

changes that it can only usually be detected in population statistics� and not in individual

cells� Moreover� we suspect that most cell databases used throughout the world contain

MACs
a�ect normal cells� due to the problem of sampling error discussed in Section ���

on page ���

We photometrically recalibrated the imaging system between each capture session�

and ensured that the imaging of normal and abnormal cells were randomly interspersed�

�Cytyc Corporation Massachusetts U	S	A	
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All cells were classi	ed through the microscope before capture� by a cytologist� We

show examples of typical normal and abnormal cell nuclei in Figure ���� We can see

from these images that it is quite di�cult for the untrained observer to distinguish visual

di�erences between normal and abnormal cell nuclei in isolation�

normal abnormal

normal abnormal

Figure ���� Typical examples of both normal and abnormal cervical cell nuclei� segmen

ted using the technique described in Subsection ������

����� Nuclear Segmentation

We now introduce the reader to our methodology for cell image segmentation� used in

this and subsequent chapters� Our image analysis focused on the chromatin texture

within the nucleus� so it was necessary for us to segment the nuclear image from its

surrounding cytoplasm and slide background� Following image capture� we segmented

each nucleus by a series of automated fast morphological transforms using octagonal

structuring elements� The coding of each operation was based on work by Lee ������

and proved to be very computationally e�cient� The roots of image morphology can

be found in set theory� For binary images Ib� each image component groups of ���

or ���
valued pixels� represents a set� Often� the image is acted upon by a structuring

element B� also represented by a set� We will now explain in detail� two operations used

to segment our cell images� the morphological opening and the morphological closing� A

more in
depth discussion of image morphology can be found in Vincent � Beucher �����

and Gonzalez � Woods ������
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The opening of a set Ib by a structuring element B can be expressed as�

Ib �B #
�n

B�l j B�l 	 Ib
o
� �����

where Ib a binary image� and B the structuring element� are sets inZ�� B�l represents

B translated by l � Z�� and � represents the opening operation� The opening can be

thought of as the union of all translates of B that 	t inside Ib� It e�ectively removes

any image components which cannot completely �hold� the structuring element� Figure

��� illustrates this concept�

Translates of

Binary image I

Structuring element B

Opening of I

structuring element B

Figure ���� The morphological opening of binary image I� using a circular structuring
element B�

The morphological closing of a set Ib by a structuring element B can be expressed

as�

Ib �B #
�n

k j �l s�t� k � Bl� Bl � Ib �# �
o
� �����

where k � Z� is a valid coordinate pair� and � represents morphological closing� A

closing operation e�ectively �	lls in� any missing image components that are smaller

than the structuring element� We show a simpli	ed closing operation in Figure ����

Our procedure for segmenting cell images using the opening and closing operations

described above is as follows� Firstly� we globally thresholded each grey
scale cell im


age I� resulting in an incomplete segmentation of the nucleus in binary form Ib� The

thresholding process can be expressed as�

�x� y� Ibx� y� #

�
� if Ix� y� � � �

� otherwise�
�����

where the co
ordinate pairs x� y� are valid image pixels and � is the threshold level�
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Binary Image
Structuring element B

element B

Closing of I

Image components
’filled’ by structuring

Figure ���� The morphological closing of binary image I� using a circular structuring
element B�

An example of this thresholding operation is shown in Figure ���a� and b�� The

initial global threshold sometimes resulted in an incomplete nuclear image� particularly

in areas of the nucleus which contained the least
dense euchromatin� Euchromatin

areas represent high image intensities within the nucleus� and such intensities were

occasionally above the threshold intensity� as we can see in Figure ���b�� We corrected

this nuclear inhomogeneity by applying a morphological closing operation� using an

octagonal structuring element slightly smaller than the smallest nucleus we expect to

	nd on a slide�

Figure ���c� shows the results of this operation� We then removed cytoplasmic

artifacts� such as blood cells and leucocytes� by performing a morphological opening of

the image� By using an octagonal structuring element slightly smaller than the smallest

nucleus� we were able to ensure only artifacts� and not valid nuclei� were removed�

Comparing Figures ���c� and ���d�� we can clearly see the removal of such artifacts�

We then used the resulting binary image as a mask for extracting the nucleus from the

grey
scale image� Figure ���d� shows an example of a binary mask� while Figure ���e�

shows the resulting segmented image�

We can express the entire morphological process as�

IS # I �
�
Ib �B�� �B�

�
� �����

where IS is the resulting segmented image� Ib is the thresholded image� and B� and

B� are structuring elements� The symbols � and � denote morphological closing and

opening� respectively� Our method proved quite robust� and the majority of cell images

were successfully segmented without human intervention� However� on some darkly
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a� b� c�

d� e�

Figure ���� The process of segmenting a nucleus from the surrounding cytoplasm and im

age background� using image morphology� a� the original greyscale image� b� threshol

ded binary image� c� removing nuclear inhomogeneity by applying an closing operation�
d� removing image artifacts by an opening operation� The resulting image is used as a
mask for segmentation� e� the segmented greyscale nucleus�

stained cells� we found it necessary to interactively adjust the initial global threshold�

����� Image Pre�Processing

Following segmentation� we pre
processed each nuclear image prior to feature extraction�

See Section ����� for a discussion of image pre
processing� We requantised all images to

�� grey levels to reduce the computational expense of subsequent PR operations� and

provide a common photometric domain for all images�

Our requantisation operation can be expressed thus�

�x� y�� I �x� y� # �oor

�
Ix� y�� Imin

Imax� Imin
 ������

�
& �� �����
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where the co
ordinate pair x� y� is a valid image pixel� I �x� y� is the requantised value

of pixel intensity Ix� y�� and the function �oor�� reduces a real
valued quantity to the

largest integer lower than the argument� The addition of � in equation ����� results in

a requantised intensity range of I �x� y� � �� � � � � ��� We have used intensity level ��� to

indicate background pixels which were not to be processed�

Figure ��� shows the e�ectiveness of our requantisation method� The two images were

chosen because of their gross di�erence in mean intensity�a result of a variation in ima


ging conditions and inherent di�erences in the density of each cell�s nuclear chromatin�

We can see that requantisation resulted in a reduction in image intensities� a normalised
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Figure ���� Requantisation of nuclear images� Notice that histogram shape is
maintained�an important property if second
order statistics are to be preserved�

photometric domain grey levels of intensity � to ���� enhanced image contrast� and the

maintenance of histogram shape� Maintaining histogram shape is an important qual


ity� because it ensures that second
order probability statistics� which are constrained

by 	rst
order statistics� are not modi	ed� An alternate form of requantisation� called

histogram equalisation or equiprobability quantising Conners � Harlow ������ could

also have been used� Histogram equalisation is often used where the imaging process

introduces photometric non
linearities commonly found in X
ray imaging�� We chose

not to use this form of requantisation for two important reasons�

�� we have measured the photometric linearity of our imaging system by 	tting a lin


ear regression line to intensity data at varying exposures� The recorded coe�cient

of regression R� was greater than ������ and we therefore consider our system to

be photometrically linear�
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�� histogram equalisation is a non
linear operation and results in all images having

the same� �at� histogram� That is� all images processed using histogram equal


isation have the same 	rst
order distribution�a uniform distribution� Because

second
order joint probabilities are constrained by 	rst
order marginal probabilit


ies� histogram equalisation can result in the space of possible second
order prob


abilities being reduced� The e�ect is to make second
order properties measured

from our images more similar� compared to when using our linear requantising

technique of equation ������ This also has the e�ect of making the classi	cation

task more di�cult than it need be�

����� Feature Pre�Processing

We pre
processed each of the �� SGF and �� GLCM features prior to feature selection

and classi	cation� using the Ladder
of
Powers technique of Velleman � Hoaglin �����

previously mentioned in Section ������ This power transform re
expressed feature data

to minimise any departures from normality� and allowed our normality
based parametric

classi	er to better pro	t from that normality� The Ladder
of
Powers technique raises

the data by a power � � R� For each feature x� both classes x� and x� were re
expressed

using the same power �� For each power� the empirical CDF or ogive� was compared

to a Gaussian CDF )� de	ned by the 	rst two moments of the re
expressed data� We

measured the goodness of 	t of these two CDFs by an error metric based on the total

squared area between the two CDFs� Thus�

Error�� #
X
c
���

	

 Z

x

�h
cdf fx�cg � ) fmean x�c � � var x

�
c �g

i��A � �����

where ) f�� ��g represents the CDF of a Gaussian distribution of mean � and variance

��� The power which minimised the sum of the errors for the two classes� �opt� was used

as the power by which the data were transformed�

�opt # min
�

n
Error��

o
� �����

Figure ��� shows a typical example of the histograms of a class
conditioned feature�

before and after normality transformation� The data used was a GLCM feature from

Chapter � whose class
conditioned distributions were highly non
Gaussian� The two

lower plots in this 	gure show the distributions after transformation via equation ������

We can see the resulting distributions are now near
Gaussian� and represent a much

closer match to a true Gaussian distribution then the unmodi	ed data�
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Figure ���� Histograms of class
conditioned feature data� before and after normality
transformation using equation ������

The ladder
of
powers method is an example of a univariate normality transform�

The optimisation of � for each feature is independent of all other feature variates� That

is� the transformation optimises the marginal normality of each feature variate� Other�

more optimal methods of normality transforms exist� such as those which enhance the

joint
normality of the feature data� We refer the reader to McLachlan ����� for a

discussion of these transforms� including a multi
variate extension to the Box
Cox uni


variate normality transform Box � Cox ������ An extensive review of the Box
Cox

power transform can also be found in Sakia ������ Multi
variate transforms are gener


ally computationally expensive and may not yield further improvement in classi	cation

performance� For these reasons� we have chosen to apply the uni
variate ladder of powers

method throughout this thesis�

����� Feature Selection and Classi�cation

We used the discriminant analysis methodology discussed in Section ����� page ��� to

reduce the high dimensionality of the feature space to a lower dimension� This allowed a

more robust estimation of the class
conditioned distributions within this new space� We

reduced the �� dimensional feature space to �� dimensions using Kittler�s plus ��take

away � feature set search algorithm Kittler ����� and the Bhattacharyya discrimina


tion measure Hand ������ To critically appraise the SGF method� we compared the
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classi	cation performance of SGF features to those of GLCM� A total of �� GLCM

features were trialed� derived from the � standard feature functions de	ned in Section

��� Energy� Entropy� IDM� Correlation� Inertia� Variance� Shade� Promenance�� Each

of these features were calculated at spatial displacements of �������� and �� pixels� The

GLCM features were similarly reduced to �� dimensions�

To highlight the bene	ts of manual feature adaptation� we used the Bhattacharyya

discrimination measure detailed in Section ����� to evaluated the discriminatory power

of each of the SGF features� Those with high discriminatory power were further investig


ated to determine the cytological properties which were manifesting the discrimination�

This was an easy step� because the features were manually chosen to measure speci	c

properties of the cell chromatin�

We applied leave
one
out classi	cation detailed in Section ������ to the optimised

sets of SGF and GLCM features to obtain accurate estimation of the real classi	cation

error� For each trial� we trained the quadratic classi	er of Section ����� on all but one

sample� and evaluated the performance of the resulting classi	er on this sample� We

repeated this process until all ��� samples had been classi	ed once� The sum of the

misclassi	cations represented the real as opposed to the apparent� misclassi	cation

rate� and is a minimally biased estimate�

��� Results and Discussion

����� Discriminant Analysis Results

Figure ��� details the real misclassi	cation rates produced by leave
one
out classi	ca


tion� We can see that SGF features provide stronger discriminatory power and better

classi	cation performance than GLCM features at lower dimensions� We feel this is due

to the tailoring of SGF features to measure speci	c texture properties� as opposed to

the more ad hoc application of pre
de	ned GLCM features� We notice that most of the

discriminatory power exhibited by the SGF features de	ned in this chapter is contained

in two features� A feature space of two dimensions provides good discrimination with

low computational burden�

����� Feature evaluation

We determined the discriminatory power of all SGF features and further analysed those

features which expressed discriminatory ability between normal and abnormal cells�
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Figure ���� Comparison of SGF and GLCM misclassi	cation rates for optimal feature
sets�

Each of the discriminatory features held valuable information directly relating to eu


chromatin and heterochromatin changes upon cell neoplasia� The following 	gures detail

several discriminatory features�

The feature NCA� measures the average number of euchromatin clumps per unit

nuclear area� We can see from Feature ��� that there is great variability in the average

number of euchromatin clumps per unit area for normal cells� however� abnormal cell

euchromatin appears to be more stable� Albregtsen et al� ����� also noted tighter

clustering of certain features from abnormal cells� Furthermore� we can see that the

number of clumps per unit area is considerably smaller for abnormal cells� suggesting

larger clump sizes� There is much published literature to support this hypothesis�

The feature max valueCAREA�� shown in Figure ���� exhibits further discrimin


atory information� This feature measures the average size of heterochromatin clumps

within the nucleus� We can clearly see that abnormal cells not only have greater vari


ability in average clump size� but also have much larger clumps than normal cells�

The distribution of the feature average valueIRGL�� shows greater variability for

normal cells than abnormal cells� This feature measures the shape of heterochromatin

clumps in cell nuclei� with low regularity indicating more circular shape� The distribution

of this feature suggests that the shapes of abnormal cell heterochromatin clumps are

more uniform than that of normal cells�
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Figure ���� An SGF feature showing clear disparity between normal and abnormal
cell nuclei� The �x� marks represent normal cells while �o� marks represent abnormal
cells� The feature average valueNCA�� indicates abnormal cells have less euchromatin
clumps per unit nuclear area� Also� the variability of this average is far less for abnormal
cells than normal cells�

Heterochromatin changes during cell neoplasia

Analysing the feature INERTIA� at each � level revealed a prominent discrimination

peak at threshold level � # �� This feature is sensitive to large heterochromatin clumps

displaced from the centre of the nucleus� The graph on the left in Figure ���� details the

discriminatory power of the feature INERTIA� at each � level� The plot on the right

shows a scatter plot of this feature at � # �� This 	gure suggests that pre
cancerous

cells have larger chromatin clumps nearer to the nuclear
cytoplasmic membrane� than

normal cells�

��� Conclusions

In this chapter� we have reviewed the method of Statistical Geometric Feature texture

analysis� and demonstrated� by example� its extension to other texture analysis prob


lems� The �exibility of this method� by tailoring speci	c features to the problem at

hand� is an important advantage over other methods which use pre
de	ned� problem


independent features� For example� we de	ned a further four feature functions which

attempt to measure speci	c properties of chromatin texture distribution in cell nuclei
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Figure ����� Another two features showing clear disparity between normal and abnor

mal cell nuclei� The �x� marks represent normal cells while �o� marks represent abnormal
cells� From the feature max valueCAREA�� we can see that abnormal cells have
larger heterochromatin clumps and greater clump size variability� From the feature
average valueIRGL�� we 	nd that abnormal cells have less variability in heterochro

matin clump shape�

images� These features provided insights into the cytological properties of abnormal

cells� and more importantly� highlighted strong di�erences between chromatin structure

in normal and abnormal cells�

We modi	ed a feature proposed by the original authors to provide invariance to

texture area and thus image window size� This allowed the feature to be applied to

problems where a 	xed window size is inappropriate or impossible to use such as cell

texture analysis��

To highlight the advantages of this adaptive method� we evaluated a total of ��

features� in the form of statistics of the six feature functions� on a data set of high


resolution cell nucleus images� After applying discriminant analysis� feature set reduc


tion and leave
one
out classi	cation� we found that a misclassi	cation rate of less than

�� could be attained using only two features� This compared favourably to GLCM�

which required eleven features for the same error rate�

Many of the SGF features provided insights into the cytological properties of neo


plastic cells� and more importantly� highlighted strong di�erences between chromatin

structure in normal and neoplastic cells� By de	ning feature functions which measure
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Figure ����� The plot on the left shows the discriminatory power of feature INERTIA�

at di�erent thresholds� The peak at � # � indicates di�erences in the locations of
large heterochromatin clumps between normal and abnormal cell nuclei� The 	gure on
the right clearly shows abnormal cells having higher �inertia�� suggesting larger clumps
nearer to the nuclear
cytoplasmic membrane� than normal cells�

speci	c properties of cell texture� we found that�

� many neoplastic cells appear to contain heterochromatin clumps with greater av


erage area than those of normal cells Figure ������

� the average number of euchromatin clumps per unit nucleus area in normal cell

nuclei is greater than that of neoplastic cells Figure �����

� normal cells have a greater variability in the number of euchromatin clumps per

unit area� whereas this quantity is far more stable in neoplastic cells Figure �����

� neoplastic cell nuclei may have larger heterochromatin clumps at greater distances

from the centre of gravity of the nucleus� compared to normal cell nuclei Figure

������



���� CONCLUSIONS ��

To conclude� the method of SGF texture analysis using the features de	ned in this

work� provided good discriminatory power when detecting textual changes in high


resolution cervical cell images� Preliminary results indicate that the method may be

as powerful as the Grey Level Co
occurrence Matrix method� Moreover� using feature

functions derived speci	cally for the purpose of cell chromatin analysis allowed quant


itative as well as qualitative descriptions of chromatin texture changes in abnormal

cell nuclei� The process of manually adapting SGF features tailored to the geometric

properties of the textures allows far stronger conclusions to be drawn from the feature

distributions and classi	cation results than is possible with many other texture methods�

thus making this technique a powerful analysis tool�

Manual adaptation of feature functions means that we need to de	ne new features

each time a new type of texture is analysed� It would be more convenient if the method

could �self
adapt� its feature functions without the need for human intervention� In the

next chapter we will begin our search for self
adaptive texture analysis techniques� which

will greatly enhance their general applicability to a wider range of texture types�



Chapter �

Improving Co�occurrence Feature

Discriminatory Power

��
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In this chapter we discuss a method of improving the discriminatory power of co�occurrence

matrix features� We investigate where co�occurrence matrix features derive their discriminat�

ory power� and provide a theoretical basis for improving this discrimination� The new method

of texture analysis we present here is self�adaptive and requires no human intervention� We

critically appraise our method in classi�cation trials against the benchmark GLCM method�

and present examples of discrimination improvement using real�world data� Cross�validation

results indicate remarkable increases in feature discriminatory power for almost all features

trialed�

��� Introduction to GLCM Feature Extraction

W
e will begin with a summary of the GLCM method reviewed in Section ������ and

focus more on the process of extracting texture information from its matrices� As

readers will remember� the co
occurrence matrix is an estimate of the joint PDF of

grey
level pairs in an image� The matrix is generally symmetric and� when normalised�

element values are bounded by $���%� and the sum of all element values equals �� Inform


ation is extracted from the matrices by applying secondary feature functions� Approxim


ately �� such secondary features appear in the literature Conners et al� ����� Haralick

et al� ����� Haralick ����� Conners � Harlow ������ and they measure four main types

of texture information�

�� measures of an image�s statistical properties�

�� measures of an image�s visual characteristics�

�� measures based on information theory� and

�� measures of information based on correlation�

Many of these secondary features are derived by weighting each of the co
occurrence

matrix element values� and then summing these weighted values to form the feature

value� The weighting applied to each element is based on a feature weighting function�

so by varying this function� di�erent texture information can be extracted from the

matrix� These weighting functions fall into two general classes�

�� co
occurrence matrix element weighting based on the element�s value� and

�� co
occurrence matrix element weighting based on the spatial position of the ele


ment�
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Table ��� lists eight of the most popular feature weightings used in the literature� In this

chapter we will use these eight features speci	cally applied to isotropic co
occurrence

matrixes�� but the method can be applied to any feature calculated by the weighted sum

of co
occurrence matrix elements� Figures ���a� and b� give examples of some of the

more common weighting functions applied to a co
occurrence matrix� In Figure ���b��

lighter shades indicate larger element weighting�
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Figure ���� Two classes of GLCM weighting functions� a� Weighting dependent on

element value� W i� j� # F
�
P i� j�

�
� b� Weighting dependent on an element�s spatial

position� W i� j� # Fi� j��

Notation and terminology common to Chapters �
 �
 and �

Indices

Class index c # �� � � � � Nc

Variate index v # �� � � � � Nv

Pattern index s # �� � � � � Ns

Grey level index g # �� � � � � Ng

GLCM matrix indices i� j # �� � � � � Ng

GLCM displacement index d # �� � � � � Nd

GLCM angle index 	 # �

�f�� � � � � N� � �g

We represent a single measure drawn from a pattern as x� and a single measure

drawn from a set of Ns patterns as the column vector x # $x�� � � � � xNs%
T� The row

vector x # $x�� � � � � xNv% denotes Nv measures or variates drawn from a single pattern�
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Type � � Weighting dependent on matrix element value� i�e��
W i� j� # F P i� j��

Function

� Energy #
P

i�j P i� j���

� Entropy # �Pi�j P i� j� logP i� j��

Weighting

W i� j� # P i� j�

W i� j� # log P i� j�

Type � � Weighting dependent on spatial position� i�e�� W i� j� # F i� j�

Function

� IDM #
P

i�j
�

���i�j��
P i� j��

� Inertia #
P

i�ji� j��P i� j��

� Correlation # �Pi�j
�i��x��j��y�p

��x�y�
P i� j��

� Shade #
P

i�ji& j � �x � �y��P i� j��

� Prominence #
P

i�ji&j��x��y��P i� j��

� Variance #
P

i�ji� ���P i� j��

Weighting

W i� j� # �
���i�j��

W i� j� # i� j��

W i� j� # �i��x��j��y�p
��x�y�

W i� j� # i& j � �x � �y��

W i� j� # i& j � �x � �y��

W i� j� # i� ���

GLCM Notation

P �i� j� is the �i� j�th element of a normalised co�occurrence matrix �

Px�i� �
P

j P �i� j��
�x �

P
i i
P

j P �i� j� �
P

i iPx�i� � Efig
�x �

P
i�i� �x��

P
j P �i� j�

Py�j� �
P

i P �i� j�
�y �

P
j j
P

i P �i� j� �
P

j jPy�j� � Efjg
�y �

P
j�j � �y��

P
i P �i� j�

� � �x � �y for symmetric matrices�
W �i� j� is the weighting applied to the �i� j�th element of a normalised co�occurrence matrix �

Table ���� GLCM feature functions which are widely used in the literature� These can
be classed into two types of weighting function� those dependent on the value of each
co
occurrence matrix element type ��� and those dependent on the spatial position of
each element type ���
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while x # $x�� � � � � xNv
% denotes a set of Nv di�erent measures where each measure xv is

as de	ned above�

A co
occurrence matrix calculated at displacement d�	 is represented as P orPi� jjd� 	��
When averaged across 	� it is represented as Pi� jjd� or its equivalent array form�

Pi� j� d�� By P i� j� we mean a single element of P measured from one pattern� while

P i� j� indicates a column vector of measures for this element� extracted from Ns pat


terns� The notation Pwi� j� represents the vector of element values after P i� j� has

been weighted by the weighting function W i� j�� Similarly� the discriminatory power of

element Pwi� jjd� is denoted as Ji� jjd� or equivalently as Ji� j� d��

����� Feature Extraction and the Curse of Dimensionality

By extracting these secondary features from co
occurrence matrices calculated at vary


ing intersample spacings d� we are able to analyse texture content at di�erent spatial

resolutions� It is well known that texture information can exist at varying spatial resolu


tions Conners � Harlow ����� Rosenfeld � Kak ����� Shen� Bie � Chiu ����� and this

multi�scale approach to feature extraction is an attempt to capture such information�

However� extracting secondary features at several scales can result in a feature space

of unsuitably large dimensions when compared to the number of training set examples

available to de	ne or characterise this space Silverman ������ This problem is com


monly known as the curse of dimensionality Hand ����� and can be easily shown by a

simple example�

Let X denote a two
dimensional normally distributed random vector� Let the two


dimensional measurement vector x� where x # $x�� x�%� represent ��� realisations of

random variable X� The histogram of the 	rst variate x� # $x���� � � � � x�����%
T� represent


ing the extraction of one feature from ��� exemplars� is shown in Figure ���� It should

be noted that each histogram bin contains a number of entries ������ # �� measures

per bin� on average�� and the histogram shape is an adequate approximation of the true

underlying distribution from which the realisations were extracted�

The second variate x� # $x���� � � � � x�����%T represents the extraction of a second

feature from the ��� exemplars� It is now necessary to estimate this new two
dimensional

histogram containing ��� bins� with only the original number of now �
D� data points�

This histogram� shown on the right of Figure ���� contains many empty bins� and all

other bins have very low counts� On average there is only ������� # � measure per

bin� Clearly� the more features we extract� the more inaccurate our estimate of the

underlying multivariate distribution becomes�

For classi	cation purposes� where an unknown texture is to be allocated to one of sev
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Figure ���� The �curse of dimensionality� at work� An example showing the decrease in
the accuracy of distribution estimation as dimensionality is increased from �
D to �
D�
For each feature� ��� realisations were drawn from normally distributed i�i�d� data�

eral classes� it is of paramount importance to accurately estimate these underlying class


conditioned feature distributions� While it would be desirable to extract only a minimal

number of �useful� secondary features where we de	ne �useful� as being those features

whose class
conditioned distributions exhibit statistical di�erences between classes�� it

is usually not known a priori which features will be useful� It is common practice to

extract a large number of secondary features� and subsequently reduce the resulting

high
dimensional feature space� using the discriminant analysis and feature selection

techniques reviewed in Section ������ This allows better estimation of the true distri


bution of features for each class based on the limited training data available� Reducing

feature set dimensionality usually involves removing those features that are redundant

to the classi	cation process� That is� removing those features which provide little or no

extra information to distinguish between texture classes� This process is accomplished

by removing highly correlated features� which provide very little extra information� and

by removing features whose discriminatory power is very low whether correlated or

not�� We discussed discriminatory power measures in Section ������ Ideally� removing

such features will not result in an increase in classi	cation error�

For secondary features which prove to be discriminatory� the question arises as to

where this discriminatory power is derived�
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��� The Discrimination Matrix

For an NgNg co
occurrence matrix� a univariate secondary feature vector x # $x� � � � � xNs
%T

is generally a weighted sum of these N�
g elements� that is

x #
NgX
i
�

NgX
j
�

W i� j�P i� j� ����

#
NgX
i
�

NgX
j
�

Pwi� j�� ����

where W i� j� is the weighting applied to the element P i� j�� Pwi� j� is the weighted

element� and i and j are the matrix row and column indices� The column vector

P i� j� # $P�i� j�� � � � � PNsi� j�%
T represents a measurement vector for matrix element

P i� j�� calculated from Ns exemplars� The feature x can be modelled as realisations

of a random variable X � whose distribution is characterised by its moments� �x� �xx�

etc� These moments� when calculated for two or more classes of data� can be used to

determine the discriminatory power of this feature� using a metric such as equation ����

on page ��� The feature x is comprised of the sum of weighted co
occurrence matrix

elements Pwi� j�� and these individual weighted matrix elements can also be considered

as random variables� each with individual discriminatory power� In the following work

we call Pwi� j� #W i� j�P i� j� the weighted elemental features� for these weighted ele


ments can themselves be used as features for classi	cation purposes� The discriminatory

power of the univariate secondary feature x will be related to how well each of the indi


vidual weighted elemental features Pwi� j� discriminate between the classes� Ideally we

would like all weighted elements to individually have high discrimination� but in general

this is rarely the case� Some elements may provide good discrimination� while others

will be poor� We can only hope that enough weighted elements possess discriminatory

power to provide the secondary feature with adequate discriminatory power�

Estimates of the discriminatory power of each weighted co
occurrence matrix element

Pwi� j� can also be determined by using the class
separability measure JB de	ned in

equation ����� We apply this metric to the weighted elements derived from a train


ing set of co
occurrence matrices� extracted from two or more classes of texture data�

Denote the discrimination for weighted element Pwi� j� as Ji� j�� and the set of such

elemental discriminations for the entire co
occurrence matrix as J� We call this matrix

a discrimination matrix� 	rst introduced in Walker� Jackway � Longsta� ������ The

discrimination matrix is rich in information� and quantitatively expresses a number of

signi	cant di�erences between the pair of textures being analysed�
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� The discrimination matrix directly gives an indication of which elements or areas

of the matrix are providing the most discrimination� This grants the potential to

select only these elements to form secondary features�

� The intensity pairs to which these elements belong can be used to determine which

areas of the original image provide the discrimination� That is� it localises areas

within the image that di�er between classes� This is demonstrated by example in

Appendix B�

� Finally� because texture can be viewed from macroscopic to microscopic resolu


tions� the elemental discrimination information can be used to determine the res


olution or scale at which to view the texture� to provide the most discrimination�

We can achieve this by varying the co
occurrence matrix displacement parameter

d� e�ectively using it as a scale parameter� and determining which scale provides

the highest average or maximum elemental discrimination�

In Figure ���� we show in detail the steps involved in calculating a discrimination matrix

from a training set of grey
scale images�

Figure ��� details the results of one such application of a discrimination measure to a

set of ���� co
occurrence matrices from the study detailed in Walker et al� ������ In

this study� co
occurrence matrices were extracted from high
resolution images of cervical

cell nuclei� For each of the two classes of nuclei normal and abnormal�� the images

were requantised from ��� to �� grey levels prior to co
occurrence matrix calculation�

Using this data� the Bhattacharyya discrimination measure de	ned in equation ����

was applied to each elemental feature vector�

Ji� j� # JB
�
Pw�i� j�� Pw�i� j�

�
� i # �� � � � � ��� j # �� � � � � ��� ����

The resulting matrix of discrimination values J� derived from co
occurrence matrices

calculated at a displacement of � pixel� is shown in Figure ���a�� In this 	gure� lighter

intensities indicate elements which provide high class discrimination� It is interesting

to note that elements with high discrimination tend to be grouped together� It is these

areas which contribute most to a secondary feature�s discrimination ability� It is no

coincidence that in Walker et al� ������ the feature Inertia� which provided the highest

discrimination for this study� weighted these o�
diagonal elements highly� The element

weighting for the feature Inertia is shown in Figure ���b�� Note the general similarity

in topography between inertia weighting and elemental discriminatory power shown in

Figure ���a��
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���� CLASS SEPARABILITY IMPROVEMENTS USING CO�OCCURRENCE ELEMENT

DISCRIMINATION MEASURES� ��
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Figure ���� a� A discrimination matrix� representing the estimated elemental discrim

ination Ji� j� for co
occurrence matrices of cervical cells� b� Element weighting for the
feature Inertia� Lighter colours indicate higher weighting�

��� Class Separability Improvements Using Co�occurrence

Element Discrimination Measures�

Based on the above discussion� there is strong evidence to suggest that discriminatory

secondary features are a result of weighting highly those co
occurrence elements which

provide high discrimination� This alludes to a simple process by which the discrim


inatory power of currently de	ned features can be enhanced� That is� by modifying

the secondary feature�s weighting function such that the weighting applied to elements

with high discrimination is further increased� The discrimination matrix is ideal for this

purpose� because it directly expresses the discriminatory power of each co
occurrence

element�

In our proposed methodology� the elemental discrimination information Ji� j� is

used to increase a secondary feature�s class separability� by modifying the weightW i� j�

applied to each element P i� j�� The discrimination matrix can be used directly�

W �i� j� # Ji� j�W i� j�� ����
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or a smoothed version used to reduce the dependency on the training set�

W �i� j� # FfJi� j�gW i� j�� ����

where F is a smoothing function and W �i� j� is now the modi	ed weighting� We can

now express a secondary feature as

x #
X
i�j

FfJi� j�g W i� j� P i� j�� ����

We use this weighting modi	cation to suppress the contribution to the secondary feature

of elements with low discriminatory power� while increasing the contribution of elements

with high discrimination� The net result should be a secondary feature with enhanced

discriminatory power�

As we mentioned previously� the discrimination matrix was determined directly from

a training set of co
occurrence data� To increase the generalisation ability of this tech


nique to new� unseen data� we need to smooth this matrix before we use it as a second

weighting� As Figure ���a� shows� we can view a discrimination matrix as a topographic

surface� and as such we can 	t a smooth parametric surface to it� We can 	t this surface

by minimising an error metric such as mean square error�� We can also control the

degree of 	tting or �generality� by varying the order of the function� say� a �
D Gaussian

or an nth
order polynomial� The number of parameters used in the modelling function

varies the degrees of freedom by which the function can be 	t to the surface� In the

extreme� by using N�
g parameters in the modelling function� and thus N�

g degrees of

freedom� the 	tting function closely matches the original� Using a smaller number of

parameters reduces the dependency of J on the training set by producing a smoother

surface� and also reduces the need to store all N�
g discrimination matrix parameters�

Usually� co
occurrence matrices are symmetric� and therefore� so is the discrimination

matrix J� Thus it is only necessary and indeed preferable to 	t only part of the matrix�

We factor J into a product of lower and upper triangular matrices J # LU� The surface

is then 	t to the non
zero elements of either the lower or upper triangular matrix� This

surface is then duplicated in the alternate matrix�

��� Methodology

We now detail experiments using discrimination
matrix
dependent re
weighting to im


prove the class separability of co
occurrence features� Our data consisted of a set of

�� segmented nuclei of cervical cells from a previous trial Walker et al� ������ Of



���� METHODOLOGY ��

the �� nuclei� �� were from abnormal cells� while �� were from normal cells� After

requantising the images to �� grey levels using the technique of Section ������ we calcu


lated co
occurrence matrices for each of these nuclei over sixteen spatial displacements

d # �� � � � � ��� We weighted each of the matrix elements using the eight feature weighting

functions de	ned in Table ���� and then determined the discriminatory power of each

weighted element� For each displacement d� this produced eight discrimination matrices

one for each feature function�� which we used to further weight the co
occurrence matrix

elements� We refer the reader to Figure ��� for details of our methodology for calculating

the discrimination matrices�

����� Smooth Surface Fitting to Discrimination Matrix

To smooth the discrimination matrices� we 	t a quadratic surface to the matrix val


ues Ji� j�� We chose a quadratic surface because it was computationally simple and

provided an adequate degree of smoothing� Higher
order surfaces or two
dimensional

	lters would be equally as valid� The general equation of a quadratic surface is Philipp

� Smadja �����

qx� y� z� # Ax�&By�&Cz�&�Dxy&�Eyz&�Fzx&�Gx&�Hy&�Iz&J # �� ����

and for surfaces whose major axis lies in the z
plane� i�e�� biquadratic forms� the coe�


cients C�E�F in equation ���� are zero� We re
express the biquadratic form as

qi� j� # Ai� &Bj� & �Cij & �Di & �Ej & F ����

with qi� j� representing the 	tted discrimination value at matrix element i� j�� We 	t

the surface by minimising the squared surface error S�

S #
NgX
i
�

iX
j
�

�
qi� j�� Ji� j�

��
� ����

where Ng is the number of grey levels in the image the co
occurrence matrix dimension��

We achieved the minimisation by di�erentiating equation ���� with respect to each of

the coe�cients A to F � and solving these � simultaneous equations for the � coe�cients�

We solved this symbolically which allowed a closed
form solution see Appendix F��

Following surface 	tting� we multiplied the weighted feature value Pwi� j� by the surface

weighting qi� j�� e�ectively reducing the contribution to the secondary feature x of
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elemental features with low discrimination�

x #
X
i�j

qi� j�W i� j�P i� j� #
X
i�j

qi� j�Pwi� j�� �����

����� Feature Pre�processing

We used the Ladder of Powers normality transform Velleman � Hoaglin ����� detailed

in Section ������ to ensure near
Gaussian class
conditioned feature distributions for each

of the ��� features eight feature functions calculated at sixteen spatial displacements��

After normality transformation� we determined the new discriminatory power of the

modi	ed features� and compared it to the discriminatory power of the unmodi	ed fea


tures�

����� Classi�cation

To estimate the real classi	cation error rate for this technique� we implemented a clas


si	cation regime using ��
fold cross
validation Weiss � Kulikowski ������ as discussed

in Section ������ For each of the ��� features� the data set was randomly partitioned to

form ten mutually exclusive test sets with equal class proportions� For each test set� its

corresponding training set consisted of the other nine test sets� Discrimination matrices

were determined from only the training set co
occurrence matrices� We calculated new

modi	ed features from the training set� and then used the Ladder of Powers technique

to transform the features� to make their distributions more Gaussian� A quadratic clas


si	er was designed based on the transformed training set� and the transformed test set

features classi	ed� We repeated this process a total of ten times� the misclassi	cation

rate being equal to the sum of the test set misclassi	cations�

��� Results and Discussion

����� Smooth Surface Fitting to Discrimination Matrix

We detail the results of 	tting a biquadratic surface to a typical discrimination matrix�

that of the feature Inertiad
�� Figure ��� shows the discrimination matrix to be 	tted

with a topographic surface� along with the resulting 	tted quadratic surface� We can

see that the resulting weighting function provides an adequate degree of smoothing�
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Figure ���� Fitting of a biquadratic surface to the discrimination matrix J for the feature
Inertiad
�� The 	gure on the left shows the discrimination matrix as a topographical
surface� The 	gure on the right shows the resulting biquadratic surface 	tted to the
discrimination matrix�

����� Discrimination Matrix Weighting

Figure ��� shows the discrimination improvements as a result of discrimination
matrix


based re
weighting� The graphs detail class
discrimination over sixteen co
occurrence

displacements d # � � � � ��� for each of the eight features� We can see that signi	cant in


creases in class separability were achieved for almost all features and displacements� The

graph for the feature variance illustrates well the improvements in discriminatory power

attainable using our method� At some displacements� discriminatory power has been

increased by an order of power from approximately ��� to ��� The most discriminatory

feature for this dataset inertia� as also attained greater class separability�

Discrimination improvements produced by biquadratic surface re
weighting are also

shown in Figure ���� Once again we can observe that� for almost all features and

displacements� signi	cant increases in class separability have been achieved�

����� Cross�validation Results

Figure ��� details the classi	cation results of our method� Each graph compares the

cross
validated misclassi	cation rate of standard GLCM features to that of the discrimination
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Figure ���� This 	gure compares class
discrimination JB for unmodi	ed� discrimination

matrix
modi	ed� and quadratic
surface
modi	ed features� Solid lines indicate the dis

criminatory power of unmodi	ed features� Dot
dashed lines indicate the discriminatory
power of features which were weighted by the discrimination matrix Ji� j� without
smoothing� The dashed lines indicate the discriminatory power of features which were
weighted by a quadratic surface qi� j��

modi	ed features� across the �� spatial displacements� We can see that remarkable

decreases in classi	cation error were attained for � of the � features� By using the

discrimination matrix as a further weighting function� we have successfully increased

the contribution of discriminatory elemental features to the secondary feature� For the

feature variance� an average ��� decrease in misclassi	cation occurred following this

modi	cation� Results for quadratic surface
	tted reweighting were similar to those of

discrimination matrix
reweighting� and are therefore not shown�

��� Conclusions

In this chapter� we presented a novel method of self
adaptive feature extraction which

signi	cantly improves the discriminatory power of many co
occurrence features� Our

improvement is based on generating a discrimination matrix which indicates the dis


criminatory power of each element of a weighted co
occurrence matrix� Based on this

discrimination matrix� we can suppress the in�uence of weighted elements with low
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Figure ���� Cross
validation results for unmodi	ed and discrimination modi	ed features�
For many features� we have attained remarkable decreases in classi	cation error�

discriminatory power on the secondary feature� In the same way� the in�uence of ele


ments with high discrimination is enhanced� We used the discrimination matrix or a

smoothed version of it� as an extra weighting function to be used in conjunction with

known standard co
occurrence matrix feature weightings�

We critically appraised our method by classifying a small database of nuclear texture

images� Cross
validation results indicate remarkable increases in feature discriminatory

power for most features� when compared to the discriminatory power of standard GLCM

features� For example� modifying the feature variance resulted in approximately ���

decrease in classi	cation error� Although we used GLCM features as an example� our

methodology can be applied to many co
occurrence
based method� such as those dis


cussed in Chapter ��

Our technique can be viewed as an extension to the co
occurrence method� because

it used the standard feature functions as its basis for modi	cation� As we will show in

the next chapter� the 	xed nature of these features is an area of weakness in the GLCM

technique which is open to further improvement�
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Self�Adaptive Multi�Scale Feature

Extraction
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In this chapter we introduce a new second�order method of texture analysis called Adaptive

Multi�Scale Grey Level Co�occurrence Matrix �AMSGLCM	� We present the motivation for

this new technique� based on the inherent limitations of standard GLCM� Our new method

deviates signi�cantly from the GLCM method in that features are extracted� not by a �xed

weighting function of co�occurrence matrix elements� but by a variable summation of ele�

ments in neighbourhoods containing proven high discrimination� We critically appraised the

performance of AMSGLCM and GLCM in pair�wise classi�cation of images from visually

similar texture classes� captured from natural� synthesised� and biologic origins� In these

cross�validated classi�cation trials� AMSGLCM demonstrated signi�cant advantages over

GLCM� including increased feature discriminatory power and decreased classi�cation error�

��� Introduction

I
n the previous chapter we reviewed the current methods of extracting feature descriptors

from co
occurrence matrices� and investigated the origins of discriminatory power

manifestation in these secondary features� We showed that highly discriminatory sec


ondary features were a result of summing weighted elemental features with high discrim


ination� However� the mechanism for extracting features from the GLCM has a number

of drawbacks�

� the de	ned features do not extract all texture information Trivedi et al� ������

� the large number of potential features which can be extracted�

� the lack of any theoretical guide to which features to extract for a particular

problem Ohanian � Dubes ������

� the de	ned features may not extract information from discriminatory areas of the

co
occurrence matrix�

In this chapter we present a novel method of extracting co
occurrence matrix features

self�adaptively� That is� the extracted features adapt to suit the speci	c characteristics

of the classes of texture to be analysed� without human intervention� We will show that

this Adaptive Multi
Scale GLCM AMSGLCM� has a number of signi	cant advantages

over standard GLCM� including increased feature discriminatory power and decreased

classi	cation error�
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��� Adaptive Multi�Scale Texture Analysis

The use of co
occurrence matrices can be viewed as a form of data reduction� where

images of arbitrary size and photometric resolution are transformed to a lower 	xed

dimensional data space of dimensions Ng Ng� It is assumed that this data reduction

process captures all the relevant texture information contained within the image�� It is

still advantageous to further reduce the order of this N�
g 
D data
space� Classical GLCM

as de	ned by Haralick et al� ����� involves extracting secondary features from the

co
occurrence matrix� e�ectively reducing this N�
g 
dimensional space to � dimensional

secondary features� As we mentioned previously� many secondary features are calculated

by a weighted sum of co
occurrence matrix element values� For example� GLCM�s

feature Inertia weights each element P i� j� with the weighting of i � j��� Figure ���

visually represents weightings for several of the most popular GLCM features� For

the feature Inertia� we can see that only the o�
diagonal elements of the matrix are

weighted highly� In Chapter �� we identi	ed that it is the characteristics of these o�


diagonal matrix elements which contribute most to the characteristics of the extracted

feature Inertia� Thus� we can view the extraction of a feature from a co
occurrence

matrix as being the summation of elements from a localised area or subset of the matrix�

In the previous chapter� we demonstrated that when classifying texture into one of

two classes T��T�� the discriminatory power of a co
occurrence matrix feature is related

to the discriminatory power of the individual matrix elements see our proof in Appendix

A������ That is� a feature formed by summing co
occurrence matrix elements with high

discriminatory power will generally have high discriminatory power� We can also show

that including elements with low discriminatory power in this weighted sum can severely

reduce the feature�s discriminatory power� We demonstrate this in Figure ��� for the

case of two independent features F ��c� F ��c� c # f�� �g� where c is the class index�

The 	rst variate F ��c has high discriminatory power while the second variate F ��c has

low discriminatory power� We can see that feature ��s poor discrimination J # �����

results in a summed feature having less discriminatory power J # ����� than feature

� J # ����� Including such poor elemental features in a weighted sum can severely

reduce the potential discriminatory power of a secondary feature� It would therefore

be preferable to exclude features with poor discriminatory power from the summation

process�

By de	ning various weighting functions which weight some elements or areas of the

matrix more highly� Haralick and others have e�ectively provided a method of extracting

�Being a �nd�order method the co�occurrence matrix is unable to capture �rd or higher�order texture
information
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Figure ���� Feature weighting functions for GLCM� a� Inertia� b� Inverse Di�erence
Moment� c� Cluster Shade� d� Cluster Prominence� Lighter shades indicate higher
weighting�

features from more localised areas of the matrix� The weightings are� however� inde�

pendent of the type of texture being analysed� and thus may not directly target

the areas of the co
occurrence matrix that contain high discriminatory power� The 	xed

nature of these weighting functions results in the possibility that no secondary feature

will possess high discriminatory power� despite the fact that certain elements may pos


sess such power� Without some guide to which elements of the matrix to use� it is

necessary to de	ne a large number of ad hoc secondary feature functions� in the hope

that one or more will possess high discriminatory power� This clari	es one weakness of

GLCM and other co
occurrence
based methods�that their 	xed feature functions ex


tract information from a reduced subset of elements those that are weighted highly�

independent of the usefulness of these elements in discriminating between textures�

As we demonstrated in Chapter �� the discriminatory power of any co
occurrence

matrix elemental feature P i� j� can be easily estimated by applying a class
separability

measure� such as the Bhattacharyya or Mahalanobis distance measures Hand ������

to the elements derived from a training set of co
occurrence matrices� extracted from

two or more classes of texture data T��T�� We denoted the discrimination for matrix

element P i� j� as Ji� j�� and the set of such elemental discriminations for the entire

co
occurrence matrix as J� In Chapter �� we determined the discriminatory power of
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Figure ���� Including features with poor discriminatory power in the summation of co

occurrence matrix elemental features can result in an overall decrease in discriminatory
power� The left and middle plots show the class
conditioned PDFs of two features� F v�c�
where v # �� � represents the variate number and c # �� � represents the class number�
The plot on the right shows the resulting class
conditioned PDFs when the two features
are summed� F ��c & F ��c� The corresponding Bhattacharyya discrimination measure J
is shown below each plot� The summed feature representing a co
occurrence secondary
feature� has poor discrimination due to feature two�s low discriminatory power�

the elements after they had been weighted by a feature function� i�e�� Pwi� j�� In this

chapter� we wish to avoid any dependence of our technique on 	xed feature functions�

We therefore calculate J directly from the co
occurrence matrix elements P i� j��

While the discrimination matrix may indicate which of the N�
g elemental features

provide high discriminatory power� we need to further consider how to best use these

elemental features to provide a new set of secondary features with dimensionality of less

than N�
g while maintaining high discrimination�� While in theory it would be possible

to use all the co
occurrence matrix elements individually as secondary features� the

computational implications of such an approach become prohibitive� If Nd is the number

of intersample displacements at which co
occurrence matrices are to be calculated� then

the total number of elemental features becomes Nd � N�
g � Feature set dimensionality

�In actuality the use of symmetric co�occurrence matrices results in only
N�

g

�
�

Ng

�
distinct elements

per matrix
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reduction via discriminant analysis and even sub
optimal feature set search algorithms

would be clearly computationally prohibitive� as we demonstrated in Section ����� on

page ��� Take for example co
occurrence matrices extracted from sixteen grey
level

images� calculated at four displacements� The resulting feature space is of ���� # ����

dimensions!

The posed problem is�

How do we reduce this Nd�N�
g dimensional feature space� while still

maintaining the highest possible feature set discriminatory power�

One approach would be to simply use those elemental features whose discriminatory

power is above a certain threshold T � That is�

x # fP i� j� d� j Ji� j� d� � Tg � i� j # �� � � � � Ng� d # �� � � � � Nd ����

where x # $x�� � � � � xNv
% is now an Nv
dimensional multivariate set of elemental features

containing only those elemental features with high discriminatory power� and Nv #

�Ji� j� � T �� This approach has several pitfalls�

� The discrimination measure used to calculate the discrimination matrix J is a

measure of 	rst
order discriminatory power� It is known that features with low

	rst
order discriminatory power may in fact possess higher
order discriminatory

power when used in combination with other features� We illustrate this point in

Figure ��� for two features which have very low 	rst
order discriminatory power�

but which possess high second
order discriminatory power� Thus� selecting fea


tures based on 	rst
order discriminatory power and a threshold T may exclude

such important elemental features�

� Many elemental features are �noisy� estimates� because of low pixel
pair counts�

This is particularly so for o�
diagonal elements� Using such individual features for

classi	cation may reduce the robustness of the classi	er modelled on this data�

� Many of the elemental features with high discrimination may be highly correlated

and therefore redundant� because they provide little additional discriminatory in


formation�

To elaborate this last point� we would expect that neighbouring elements within a co


occurrence matrix are correlated� because they are measures of similar image qualities�

and therefore tend to possess similar discriminatory power� For example� we would

expect neighbouring elements P �� �� and P �� �� to contain similar pixel
pair counts�
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Figure ���� An example of two features which possess higher
order discriminatory power�
despite having very low 	rst
order discriminatory power� a� The 	rst feature variate�
�x� and �o� marks represent class � and class � data respectively� b� The second feature
variate� Both the 	rst and second variates possess minimal 	rst
order discriminatory
power� c� A scatter plot of the two features� Note the high second
order discriminatory
power�

compared to� say� element pairs P �� �� and P �� ���� This same assumption can be

applied to elements with equivalent indices� from co
occurrence matrices calculated at

�neighbouring� intersample displacements� e�g� P i� jjd�� P i� jjd&��� The spatial extent

of high element
pair correlation can be easily determined from training set data� by
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plotting a graph of correlation � versus element
pair displacement de�

Corrde� # E
n
�
�
P i�� j�� d��� P i�� j�� d��

�
j
�
i� � i��

� & j� � j��
� & d� � d��

�
� �
� # de

�
� ����

� i�� i�� j�� j� � f�� � � � � Ngg� d�� d� � f�� � � � � Ndg�

where E and � are the expectation and correlation operators respectively�

Our experience suggests this to be correct� Figure ��� details a graph showing average

element
pair correlation versus element separation determined using equation ����� The

data used were co
occurrence matrices from a previous study Walker� Jackway � Lovell

������ calculated at sixteen intersample displacements d # �� � � � � ���
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Figure ���� Average co
occurrence matrix element
pair correlation � versus element
separation de� This 	gure clearly shows that neighbouring co
occurrence elements are
highly correlated� while spatially distant neighbours are uncorrelated�

We can see that neighbouring elements are� on average� highly correlated� while very

little correlation exists between more distant elements� More empirical evidence is sug


gested in Figure ��� where it can be seen that discriminatory power varies somewhat

smoothly over the domain of the co
occurrence matrix� That is� high discriminatory

power is exhibited in localised areas or neighbourhoods of elements� as opposed to in


dividual isolated elements� If neighbouring elements were uncorrelated� they would be

unlikely to exhibit such similar discriminatory powers�
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This leads us to a second approach to dimensionality reduction� Highly correlated

elemental features within the neighbourhoods of local discrimination maxima could be

removed because they provide minimal additional discriminatory power�� while keep


ing those that are uncorrelated� A better approach would be to sum together highly

correlated elements in a given neighbourhood of high discrimination� This summation

also has the advantage of reducing any random noise that may be present in the feature

estimates� increasing the robustness of the feature estimates�

Unfortunately� Appendix A���� proves that such a summation will always result in a

decrease in apparent discriminatory power� compared to if the elemental features were

left separate as individual secondary features� However� for highly correlated features�

the resulting decrease in discriminatory power following the summation is minimal� This

is demonstrated in Appendix A����� Moreover� if we can reduce feature set dimension


ality by using this prior knowledge that of GLCM spatial correlation� in such a way

that the discriminatory power is hardly reduced� then it increases the chance of 	nding

a robust discriminant function which is also good for the original population set� rather

than just for the training set� The use of a lower
dimensional feature space results

in a corresponding increase in class
conditioned PDF model accuracy and the possib


ility of increased classi	cation performance by avoiding the �curse of dimensionality�

Hand ������

Based on the above discussions� we propose a new approach to secondary feature

formation by summing element values� We restrict the number of such summations for

each secondary feature to those elemental features within a neighbourhood of a local

maximum in discrimination� That is� each secondary feature is formed by summing only

those elements within the neighbourhood of a maxima in discrimination� This helps

to ensure that the secondary feature is not contaminated by including the remaining

elements external to this neighbourhood which may contain low discriminatory power

or are uncorrelated�a problem which occurs in classical GLCM� Being a fully self


adaptive weighting method� we can see that the range of possible element weightings is

far greater than that of the �� listed GLCM features de	ned in the literature� That is�

if we consider the set of all possible weighted sums of co
occurrence matrix elements�

our approach provides a �more complete� set of weighting functions than the minimal

set of �� 	xed GLCM feature functions�

It should be emphasised that we are now considering a three
dimensional stack of

co
occurrence matrices for each texture image� calculated at the various intersample

displacements d # � � � � Nd� and a corresponding three
dimensional neighbourhood� The

size of this �
D neighbourhood is determined empirically using a graph of correlation

versus element separation as shown in Figure ���� The calculation of co
occurrence
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matrices at Nd displacements� from grey
scale images requantised to Ng levels� results

in a three
dimensional discrimination space of Nd  Ng  Ng elements� We show an

example of a stack of discrimination matrices in Figure ���� calculated from texture

images detailed in Section ������ This 	gure demonstrates that discriminatory power

can exist at not only several scales� but also at varying positions or areas within the

co
occurrence matrices� It is also interesting to note that discriminatory power exists in

localised clusters which extend across scale
space d as well as across matrix
space i� j�

Figure ���� A vertical stack of �� discrimination matrices for spatial displacements
d # �� � � � � ��� Spheres with high intensity indicate corresponding co
occurrence matrix
elements which possess high discriminatory power�

This three
dimensional representation of discriminatory power shows which areas

of the co
occurrence matrix to use to form features and at what resolution to extract

texture information� It also highlights the limitations of the 	xed feature functions of

standard GLCM� and other co
occurrence matrix
based methods� which often weight

highly non
discriminatory areas of the matrix� or use an inappropriate resolution to

extract the texture information�

In summary� forming secondary features by the weighted sum of elements from loc


alised areas of high discriminatory power has a number of advantages� namely�
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� because these elements are highly correlated� the summation results in minimal

loss of texture information�

� the summation reduces feature estimate error caused by independent noise in the

element estimates�

� being a summation of only elements with high discriminatory power� the resulting

feature also has high discriminatory power�

� as can be seen in Figure ���� the number of discriminatory areas is generally

limited� Hence� the majority of discriminatory information can be extracted in a

minimal number of secondary features�

����� Adaptive Multi�Scale GLCM Algorithm

Our proposed AMSGLCM algorithm selects localised areas of co
occurrence matrices

for summation based on Seeded Region Growing� a recently published methodology for

segmenting images Adams � Bischof ������ Seeded region growing begins with the

choice of a number of seeds individual pixels or groups of pixels� from which the seg


mented regions are grown� The growth of these regions that is� the inclusion of unclassi


	ed neighbouring pixels� is controlled by a criterion�usually homogeneity or similarity�

After all pixels have been allocated to one and only one� region� the resulting tessellated

image is considered to be segmented�

The seeded region growing algorithm incorporated in AMSGLCM di�ers from the

above in the following ways�

� The method was extended from �
D to �
D� by growing regions within the three


dimensional stack of discrimination matrices� Each region thus represents a corres


ponding group of co
occurrence matrix elements to be summed to form a secondary

feature for classi	cation purposes�

� Seed points are chosen iteratively one at a time�� rather than all being designated

at the start of the growing process� This is because the seed criterion is the global

maxima of discrimination for the current iteration� and only one global maxima

exists in the �
D discrimination space at any given iteration�

� Regions are constrained to occupy a volume no greater that the three
dimensional

local neighbourhood determined by the correlation graph� This ensures that only

highly correlated elements are summed to form secondary features�
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The AMSGLCM algorithm is explained below� and in Figure ����

Step �� For each texture image� requantise the image to Ng intensity levels and calculate

co�occurrence matrices at each of the Nd intersample displacements d # � � � � Nd�

Step �� For each pair of texture classes� calculate an Ng Ng discrimination matrix at

each of the Nd intersample displacements� This produces a three�dimensional stack

of discrimination matrices� showing the discriminatory power of each co�occurrence

matrix element at each displacement�

Step 
� To determine a suitable neighbourhood size N for calculating secondary features�

plot the graph of average element�pair correlation versus element displacement using

equation ���
	� as shown in Figure ���� From the graph� choose a ��D neighbourhood

size which will contain elements whose correlation is above a threshold� say � � ����

Step 	� From the stack of discrimination matrices� locate the global maxima of

discrimination Jmaxi� j� d� # max
i�j�d

fJi� j� d�g� This element becomes a new seed for

region growing� and the corresponding elemental feature P i� j� d� becomes the basis

for a new secondary feature� Call this new feature the current sum CS # P i� j� d��

Consider elements P i� j� d� such that Ji� j� d� � NJmaxi� j� d��� where N

represents the ��D neighbourhood determined by equation ���
	� Then�

if

JBfCS & P i� j� d�g � JBfCSg
then

CS # CS & P i� j� d��

Ji� j� d� # ��

end

where JB is the discriminatory power measure of equation ����	� That is� for each

element within the three�dimensional neighbourhood of this maxima� add the

corresponding elemental feature to the current sum if it does not reduce the resulting

discrimination� The resulting summed feature becomes a secondary feature to be

used for classi�cation purposes� For all elements which were summed� reset the

corresponding discrimination measure to zero� This ensures that the elemental

feature is not summed again in another secondary feature� thus helping to make the

resulting secondary features more uncorrelated and independent�

Step �� Repeat from step � until a suitable number of features have been extracted�

�
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Comment

While elemental features within the de	ned neighbourhood are� on average� highly cor


related� the question of whether a pair of neighbouring elemental features are� in fact�

correlated should be determined on an individual basis� This is why� in Step �� we do

not automatically sum all elemental features within the neighbourhood� We only sum

elemental features if the discriminatory power of the resulting summed feature is not

less than that of the previous summed feature� We use a discrimination measure� rather

than a correlation measure� simply because it is easily calculated and directly indicates

the discriminatory power of the resultant feature�

��� Evaluation of AMSGLCM Methodology

We now detail a methodology for comparing the classi	cation performance of our pro


posed algorithm to that of classical GLCM� for the �
class problem�

����� Texture Database

To demonstrate the power of our method� we used as test data pairs of grey
scale images

containing visually similar textures from several sources� This is in contrast to much

of the literature where visually distinct textures were often used in the classi	cation

experiments� Our chosen texture pairs are�

�� Brodatz images�

Textures D� and D� from Brodatz�s Photographic Album Brodatz ������ Grey


scale images of �
bit photometric resolution� ���  ��� pixels in size�

�� MIT�s VISTEX database�

Textures Sand����� and Sand����� from Massachusetts Institute of Technology�s

Vision Texture database Picard� Graczyk� Mann� Wachman� Picard � Campbell

������ Grey
scale images of �
bit photometric resolution� ��� ��� pixels in size�

�� Synthesised Brodatz texture images�

Brodatz texture D��� synthesised using a non
parametric multi
scale non
causal

Markov random 	eld model� The images were generated by a multigrid technique

using the Gibbs sampler and a novel pixel temperature function� Full details can

be found in Paget � Longsta� ������ Class � data uses an MRF neighbourhood

size of �  � pixels� while class � uses a neighbourhood size of � � pixels�
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Figure ���� The AMSGLCM algorithm� shown in �
D for clarity� For each image in the
database a�� calculate co
occurrence matrices b�� From the pair of class
conditioned
distributions of each co
occurrence matrix element c�� calculate the discrimination
measure d�� Locate discrimination maxima in the resulting discrimination matrix�
and grow regions within their neighbourhoods e� as per step � on page ���� To extract
a feature for a texture image f�� calculate its co
occurrence matrix g�� and sum the
elements represented by the grown region h��
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�� Synthesised Brodatz texture images�

Brodatz texture D�� synthesised as detailed above� Both class � and class � data

use the same neighbourhood size� however� class � uses a texture image generated

at a later iteration in the synthesis process than class �� Photometric resolution

was �
bit and spatial resolution was ���  ����

�� Cervical cell nuclear chromatin texture images�

High
resolution images of cervical cell nuclear chromatin� captured from cytolo


gically normal and abnormal cells� at a spatial resolution of �����m per pixel� Full

details of this database can be found in Section �����

Figure ��� shows images of each of the � texture pairs�

Brodatz VisTex Synthesised Synthesised Cell Chromatin

Figure ���� Pairs of textures used in the classi	cation trials of GLCM and Adaptive
Multi
Scale GLCM� The top row of images are class � textures� while the bottom row
are class ��

For texture pairs � to �� we extracted a total of ��� image tiles for each class by

randomly sampling the original image� To obtain enough data� tiles were allowed to

overlap� For each texture pair� the tile size was varied until a measurable misclassi	c


ation rate was achieved� This was necessary because using a 	xed tile size for all four

texture pairs resulted in some textures being classi	ed perfectly using both standard

and adaptive GLCM�

For texture pair �� we used the same database of �� normal and �� abnormal chro


matin texture images discussed in Section ������ Due to the small size of each image as

small as ��  �� pixels�� the entire image was used in the feature extraction process�
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����� Feature Extraction

For standard GLCM� we extracted the eight secondary features de	ned in Table ��� at

sixteen intersample displacements d # �� � � � � ��� giving a total of ��� features�

For AMSGLCM� to ensure a fair classi	cation comparison� we calculated discrimin


ation matrices at each of the above sixteen displacements� Using the algorithm de	ned

in Section ������ we extracted secondary features from neighbourhoods of the 	rst ���

local maxima in discrimination� starting with the global maximum in discrimination�

and repeatedly searching for the new global maxima after each iteration�

We used the normality transform introduced in Section ����� to pre
process the

features prior to discriminant analysis and classi	cation�

����� Feature Selection

Once again� we used the add
��subtract
� algorithm described in Section ����� to 	nd

an optimal set of features at reduced dimension� For texture pairs � to �� we reduced

the ���
dimensional feature space to 	fteen dimensions� based on the rule of thumb of

six exemplars per feature per class Foley ������ Using the same rule� we reduced the

dimensionality of features for texture pair � cell data� to ten dimensions� due to the

reduced number of exemplars available� We used the parametric Bhattacharyya distance

measure de	ned in equation ���� to determine feature set discriminatory power�

����� Classi�cation

For each analysis method� we used pair
wise ten
fold cross
validated classi	cation Sec


tion ������ to provide a robust estimation of the real classi	cation error� We randomised

the data set and partitioned it into ten approximately
equal test sets� The complement

of each test set was used to train the quadratic classi	er� and the performance of the

resulting classi	er was evaluated on the test set� It was necessary to include the feature

selection process in this step� i�e�� a new feature set was selected based only on the train


ing set data� We then classi	ed the corresponding test set features� using the quadratic

discriminant function de	ned in equation �����

��� Results and Discussion

In all 	ve classi	cation trials� AMSGLCM outperformed GLCM with signi	cantly lower

classi	cation error rates� This is clearly shown in Table ���� which details the minimum
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error rates achieved by each method and the corresponding number of features used to

obtain those rates� The 	nal column details the extent of the improvement in classi	c


ation achieved by AMSGLCM�a reduction in errors ranging from �� to ����� Figure

��� provides a visual comparison of the performance attained by the two methods�

GLCM AMSGLCM
Texture Minimum Number of Minimum Number of Error

Pair Error Features Error Features Decrease

� ���� �� ���� � ���
� ���� � ���� � ���
� ���� � ���� � ���
� ����� � ����� �� ���
� ����� � ���� � ���

Table ���� Comparison of classi	cation performance of the AMSGLCM algorithm to
that of standard GLCM�

AMSGLCM

GLCM

E
rr

o
r 

(%
)

0

2

4

6

8

10

12

CellMRF 2

Cross-Validated Classification Error

Brodatz VisTex MRF 1

Figure ���� Graphical comparison of classi	cation performance of the Adaptive Multi

Scale GLCM algorithm to that of standard GLCM�

In most real
world systems using texture classi	cation� it is usual to include features

from several analysis methods� Usually� only the 	rst few highly discriminatory features

�relative error de�ned as ErrorGLCM�ErrorAMSGLCM

ErrorGLCM
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from each method would be included in the 	nal classi	cation system� Thus� it is im


portant to consider not only the minimum error rates� but also the number of features

required to achieve this rate� The graphs of Figure ���a
e� show that AMSGLCM

attained� on average� lower misclassi	cation rates for all feature sets from � to �� di


mensions� We summarise this information in Table ����

Feature set dimensions
Texture Pair � � � � � � � � 	 ��

� L W W W W W W W L L
� W L W W W L W W T W
� W W W W W W W W W W
� T L W W L L W W W W
� W W W W W W W W W W

Total Win
Lose �W
�L �W
�L �W
�L �W
�L �W
�L �W
�L �W
�L �W
�L �W
�L �W
�L

Table ���� Win
Lose comparison of classi	cation performance of AMSGLCM versus
standard GLCM� for feature sets of � to �� dimensions W#win� L#lose� T#tie��

In this table� we awarded a �win� to the AMSGLCM algorithm if� at the particular

feature set dimensionality� its misclassi	cation rate was lower than that of GLCM� or a

lose if its misclassi	cation rate was greater� It can be seen that AMSGLCM won three

or more of the 	ve classi	cation trials� for all feature sets up to at least �� dimensions�

Therefore� in a classi	cation system comprising of several composite analysis methods�

the inclusion of AMSGLCM should be considered over GLCM�

We found that AMSGLCM provided secondary features with� on average� higher

	rst
order discriminatory power than standard GLCM� This is represented by histo


grams in Figures ����a
e�� a comparison of the 	rst
order discriminatory power of all

��� AMSGLCM and GLCM features for the 	ve classi	cation trials� The �x� axis repres


ents the 	rst
order Bhattacharyya discrimination measure as de	ned in equation �����

and the �y� axis represents the number of features which possessed this discrimination�

Notice the general shift to the right in the distributions of AMSGLCM discriminatory

power compared to GLCM�� indicating features with higher average discriminatory

power� Also notice the vastly reduced number of AMSGLCM features which possess no

discriminatory power�

AMSGLCM was able to provide secondary features with higher discriminatory power

because it exploited higher
level knowledge the information in the discriminationmatrices��

This allowed direct targeting of localised areas of the co
occurrence matrices with proven

discriminatory power for feature formation� and provided the inherent ability of the

method to adapt to the type of texture being analysed� The method of localised sum


mation excludes elemental features with low discriminatory power� or those which are

uncorrelated and therefore possibly more independent and better used as separate fea


tures��
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Figure ����� Histograms of GLCM and AMSGLCM feature discriminatory power� a�
Brodatz textures D� and D�� b� VISTEX textures Sand����� and Sand������ c� MRF
synthesised texture D��� d� MRF synthesised texture D�� e� Cell chromatin texture�
Notice the general shift to the right in the distribution of AMSGLCM discriminatory
power compared to GLCM�� indicating features with higher average discriminatory
power� Also notice the vastly reduced number of AMSGLCM features which possess no
discriminatory power�
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Computationally� the AMSGLCM and GLCM algorithms are similar and have many

common steps� For AMSGLCM� a number of further steps are necessary� namely�

� the calculation of discriminatory power for each co
occurrence matrix element�

� the determination of �
D neighbourhood size via a correlation graph� and

� the formation of secondary features via a decision metric�

These additional steps do increase the computational burden� However� after train


ing and evaluation� classi	cation times for new unseen data are similar to existing tech


niques� Moreover� the capacity of the AMSGLCM method to isolate neighbourhoods

of high discriminatory power and form features from just these areas� means it extracts

more discriminatory information in fewer features than GLCM� This� in turn� markedly

reduces feature selection�discriminant analysis computation time� o�setting most of the

increase due to additional steps�

��� Conclusions

We have introduced a new second
order method of texture analysis called Adaptive

Multi
Scale Grey Level Co
occurrence Matrix� based on the well
known GLCM tech


nique of Haralick et al� ������ Our method deviates signi	cantly from the original

in that features are extracted� not via a 	xed two
dimensional weighting function of

co
occurrence matrix elements� but by variably summing elements in three
dimensional

neighbourhoods containing proven high discrimination� The ability to detect such po


tentially useful regions within the co
occurrence matrix� by using a discrimination mat


rix� results in a number of signi	cant advantages over the traditional GLCM method�

namely�

� the features extracted using AMSGLCM have� on average� higher discriminatory

power than the standard GLCM features de	ned in published literature Figure

������

� using AMSGLCM features� on average� provides lower misclassi	cation error than

that of standard GLCM Figure �����

� for a given misclassi	cation error� the number of AMSGLCM features required is

generally less than that of standard GLCM features Figures �����
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We demonstrated these advantages in trials comparing the performance of AMSGLCM

and GLCM in classifying a range of visually similar images captured from natural� syn


thetic and biologic origins� AMSGLCM achieved signi	cantly lower classi	cation error

rates and increased feature discriminatory power� The multi
resolution technique is fully

self
adaptive and requires no human intervention� It self
adapts to the speci	c types

of texture being analysed locally optimised� yet it can be applied to a wide range of

textures globally adaptive��

Once again� it is important to mention the general applicability of our method�

Although the technique was trialed on grey level co
occurrence matrices� it is not only

limited to GLCM� AMSGLCM can be extended to any analysis method where a series of

matrices are determined via constraint parameters� such as NGLDM Sun � Wee ������

Yogesan�s GLEM and GLVM methods Yogesan ����� or GCM Davis et al� ������
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���� INTRODUCTION ���

In the previous chapter we introduced our �rst fully self�adaptive multi�resolution technique

for analysing texture in images� Here we present a slightly dierent approach which attempts

to extract an optimised set of highly discriminant features without the need for explicitly

calculating a discrimination matrix� We use Genetic Algorithm optimisation to produce

a set of features whose worth is evaluated by �rst�order discriminatory power and feature

correlation considerations� Once again� we critically appraised the performance of our Genetic

Algorithm optimised GLCM �GAoGLCM	 method and GLCM in pair�wise classi�cation of

images from visually similar texture classes� captured from synthesised and biologic origins�

In these cross�validated classi�cation trials� our method demonstrated signi�cant advantages

over GLCM� including increased feature discriminatory power and decreased classi�cation

error�

��� Introduction

T he Adaptive Multi
Scale GLCM algorithm of Chapter � provided a multi
resolution

approach to texture analysis which extracted highly discriminant features with low

correlation compared to standard GLCM features� We used a set of discrimination

matrices to locate discriminatory co
occurrence matrix elements� We then used localised

groups of these elements to form discriminant secondary features� by summing these

elements� In fact� we can consider the formation of AMSGLCM features as being a

weighted sum of all elements� just like standard GLCM� In the case of AMSGLCM�

however� this weighting is binary� i�e�� ��� or ���� That is� elements to be summed were

given the weighting of ���� while all other elements were given a weighting of ���� This

parallelled the approach of standard GLCM where secondary features are also weighted

sums of all co
occurrence elements� However� our method allowed the location and size

of high weighting ���s� to be adapted to the types of texture being analysed� In GLCM�

these locations are 	xed�

These binary weighting functions are somewhat restrictive� in that the weighting

can only be either ��� or ���� and ��� weightings are restricted to locations within a 	xed

neighbourhood of high element correlation� Both of these restrictions can be removed

by using a parameter
controlled continuous weighting function� Such a function could

allow precise control of weight values by allowing each weight to take on a real value�

W i� j� d� � �� Also� greater �exibility in weighting localisation could be attained by

adjusting the parameters upon which the function is dependent� But how do we control

the values of these parameters without the need for human intervention" Also� is it

possible to control these weighting functions in such a way that the extracted features

are optimised for high discriminatory power and low correlation"
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The Genetic Algorithm is ideally suited to such parameter
based optimisation of a

highly complex solution space� In this chapter we will use a GA to optimise the locations

and shapes of a set of Gaussian weighting functions� Each function will be used to form

one secondary feature� by a weighted sum of all co
occurrence matrix elements� Gaus


sian weighting functions allow precise yet simple weighting control using a minimum of

parameters�mean and variance
covariance� We will once again use a three
dimensional

stack of co
occurrence matrices� calculated across several spatial displacements� for fea


ture extraction� Therefore� each Gaussian weighting is also three
dimensional� We will

now review genetic algorithm optimisation in detail�

��� Genetic Algorithm Optimisation

The Genetic Algorithm is a recent and novel optimisation algorithm whose mechanisms

mirror processes observable in natural evolution Holland ����� Bethke ������ In its

most basic form� the GA consists of three functions�

�� genetic selection�

�� genetic operation�

� crossover

� mutation

�� genetic replacement�

These functions work on a population of candidate solutions called chromosomes� Figure

��� details the life�cycle of a GA in terms of these operations�

The life
cycle of a GA begins with a population of chromosomes upon which we apply

the above operations� Each chromosome consists of a string of genes which encode input

variables to the problem for which a solution is sought� An individual gene usually takes

a binary or real value� In this work� we only consider binary
valued genes� as they are

the most widely used in the literature� Given that each chromosome represents a trial

solution to a problem� we need to quantitatively measure how optimal each solution is�

We achieve this by assigning a measure of chromosome worth to each chromosome� The

worth of a chromosome is expressed using an objective function O� or alternatively via

a related function called 	tness� A chromosome�s worth directly determines its chance

of being represented in a new generation�

We randomly generate an initial population of chromosomes� and evaluate their cor


responding worth� From this initial population pool� we select a subset population of
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Figure ���� The life
cycle of a Genetic Algorithm�

parent chromosomes with high chromosome worth� It is from this subset of parent chro


mosomes that o�spring or child chromosomes are generated� via the genetic operations

of crossover and mutation� We evaluate the worth of each o�spring� and use it to form

a new population by replacing �weaker� parent chromosomes� based on a replacement

strategy� GA operations involve random processes� and many are weighted random pro


cesses where the probability of an outcome is weighted by an input quantity such as

chromosome worth� Such a weighting strategy helps to ensure the �survival of the 	ttest�

chromosomes� with the result that each successive cycle or generation of chromosomes

has� ideally� increasing average and maximum worth�

We continue the above cycle of parent selection� child generation� and replacement�

until a minimum acceptable 	tness is attained by one of the chromosomes� or until a set

number of cycles has concluded� The chromosome of highest worth in the terminating

population represents a highly optimised solution to the problem�

In Figure ���� we show a simple application of a GA to the optimisation of an

independent variable x� such that x maximises the objective function Ox� # �x�&�x�

In this example� we encode a population of four chromosomes with random initialisations

of the input variable x � f�� ���� �� � � � � ���g� using �
bit binary encoding�
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Figure ���� Chromosome encoding and 	tness evaluation� Fitness is evaluated directly
from the objective function Ox� # �x� & �x�

From this initial pool� parent chromosomes are selected according to their worth or

	tness� We assign to each chromosome a 	tness value f determined directly from the

objective functionOx� # �x�&�x� Because the value encoded by the third chromosome

x # �� is closest to the optimal value xmax # ����� it achieves the highest 	tness

value and thus has the greatest chance of passing on genetic information to succeeding

generations of chromosome populations� We discuss next the process of parent selection

based on 	tness�

����� Genetic Selection

Selection or reproduction is a mechanism where chromosomes from the current popu


lation are chosen as parents for possible �mating�� according to their 	tness values f �

The idea is to give parent chromosomes with high 	tness a greater chance to pass on

their genetic information to subsequent o�spring� This mechanism simulates �survival

of the 	ttest� and natural selection in nature� The process of parent selection is most

commonly achieved using Roulette Wheel Selection Goldberg ������ where a roulette

wheel�s slot sizes are proportional to each chromosome�s 	tness value� Each spin of

the wheel selects a parent from the current population of chromosomes� The process

is shown in Figure ���� The proportionate worth of each chromosome expressed as a

percentage� is determined by dividing each chromosome�s worth by the total worth of

all chromosomes� We can see from Figure ��� that the chance of a chromosome being

selected as a parent from this biased wheel is directly proportional to its worth�
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Figure ���� The process of genetic selection� The roulette wheel is partitioned in accord

ance with the worth of each chromosome� The chance of a chromosome being selected
for reproduction is therefore directly proportional to its worth�

����� Fitness Techniques

In the previous example shown in Figure ���� we determined the 	tness of a chromo


some directly from an objective function�the function to be optimised� While such an

approach is acceptable for this example� it can result in poor GA performance in other

optimisation problems� This is best illustrated by example�see Figure ���� We take the

case of optimising two similar functions� O�x� # �x�&�x and O�x� # �x�&�x&����

In Figure ���� we show the 	tness values and resulting roulette wheel biases for both

functions� where 	tness is determined directly from the objective functions� For object


ive function O�� we 	nd that the small range of 	tness values as a proportion of total

	tness� results in all chromosomes having almost equal chance of selection as parents�

To increase the range of 	tness values� we use 	tness techniques to re
map objective

function values� One of the simplest 	tness techniques� called windowing� assigns a

	tness value f to the ith chromosome Ci proportional to the di�erence between its

objective value OCi� and that of the weakest chromosome Omin # min
j
OCj��

fi # OCi��Omin & k� ����

where k is a suitable constant� This normalisation process ensures an appropriate range

of 	tness values are assigned� irrespective of the range of objective values� We demon


strate this in Figure ����
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biasing of the roulette wheel� For objective function O�� the weakest and strongest
chromosomes have approximately equal 	tness values�
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Figure ���� An example of the windowing technique� applied to objective function O� of
Figure ���� We choose k to be approximately ��� of the total range of objective values�
i�e�� ��� � ���� � ���� Compared to the roulette wheel for O� of Figure ���� we now
have a larger spread of 	tness values�

����� Genetic Algorithm Operations

Crossover

Crossover or recombination is a simple process where pairs of parent chromosomes �swap�

groups of their genes� This process enhances the probability that 	tter parents pass on

bene	cial subsets of their genes� thereby increasing the chances that children of higher

	tness are produced� From a solution
space search viewpoint� where each chromosome

represents a single point in solution
space� the crossover operation ensures that new
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Figure ���� The inheritance of genetic information from both parents is achieved via
crossover

The most common and simplest form of crossover operation is single�point crossover�

shown in Figure ���� In this operation� we form a pair of new children by randomly se


lecting a single crossover point along a pair of randomly chosen parent genes� and then

swapping the portions of the chromosomes beyond this point� The rate of occurrence of

a crossover operation can be controlled by a probability term Pc� whose value typically

lies in the range ��� to �� If no crossover occurs� children become direct copies of their

parents� The choice of Pc is a compromise between �exploitation� of localised areas of

solution
space� and �exploration� of new areas� High values of Pc help to ensure new

areas of the solution
space are searched� However� this means that 	t parents may no

longer be represented in the next generation� Lower values of Pc allow more children to

be exact copies of their parents which� along with the mutation operation� allow more

localised exploration of solution
space and thus exploitation of more optimal solutions�

However� low Pc values can create too many o�spring which are simply copies of their

parents� This can result in slow GA convergence or stagnation due to the lower rate of

generating unique o�spring�

Mutation

In GAs� mutation is the occasional random alteration of a single gene� and is performed

on a bit
by
bit or gene
by
gene� basis� Its purpose is two
fold� Firstly� it helps successive

generations to acquire new genetic information� which may not be added via simple

crossover operations alone� For example� if the n
th bit of all chromosomes in the

current population is the same value� say� ���� the crossover operation will never result
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in this bit being set to ���� Applying the mutation operation will� given time� introduce

this new information� Secondly� mutation helps to maximise near
optimal solutions via

more localised searches�

For binary
encoded chromosomes� a mutation occurring with probability Pm com


plements the binary value of a single gene� as shown in Figure ���� Each bit of the

chromosome undergoes mutation if its probability test is passed� Thus� for a chromo


some of bit length LC� the average number of gene mutations Nm is

Nm # Pm  LC� ����

A second form of mutation occurring with probability Pm replaces a bit with a randomly

generated binary value of equal probability p�� # p�� # ���� We can see that this rate

of mutation is e�ectively half the previous rate� as there is equal chance that the new

bit value will be the same as the current value� thus�

Nm # Pm  ptransition� LC ����

# ���  Pm  LC� ����

where ptransition� is the probability of the generated bit being the binary complement

of the current bit� Typical ranges for Pm are from ����� to �����

0

1 1 1101

1 111 0

Figure ���� Introducing new genetic information is achieved by the mutation operation�

����� Generation Replacement Strategies

Each generation of parent chromosomes produces an equal number of child chromosomes

or o�spring via the aforementioned genetic operations� Forming a new generation by re


placing all parents with children may result in the best parent failing to be represented in

the new generation� Two similar forms of replacement strategy have been implemented
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to overcome this� elitist and steady�state replacement� The elitist strategy replaces all

but the single best� or several best� parent chromosomes� while steady
state replacement

replaces only the weakest parent chromosomes� The elitist strategy is the most popu


lar and provides good GA performance� but can result in a single �super chromosome�

dominating the population� The steady
state replacement strategy can su�er from slow

convergence� as the rate of introducing new genetic information is slower�

��� Adaptive Multi�Scale Texture Analysis Using

Genetic Algorithm Optimisation

Our proposed algorithm extracts features by selecting localised areas of co
occurrence

matrices for element summation� The method di�ers from classical GLCM feature

formation in the following ways�

� The method is extended from �
D to �
D� by extracting secondary features from

a stack of co
occurrence matrices calculated over a range of spatial displacements

d # �� � � � � Nd�

� Rather than using GLCM�s 	xed element weighting functions for element summa


tion� our algorithm uses adaptive �
D Gaussian weighting functions W i� j� d� to

form weighted sums of localised areas of the stack of co
occurrence matrices� We

use a genetic algorithm to optimise the location and size of these Gaussian weights

in co
occurrence
space P i� j� d��

� The appropriate choice of GA objective function allows the simultaneous optim


isation of a feature�s 	rst
order discriminatory power� whilst minimising feature

correlations�

The Gaussian weighting functions take the form

W i� j� d� # exp
�

�h
�i j d��W

i
���
W

h
�i j d��W

i
T
�
�

i� j # �� � � � � Ng� d # �� � � � � Nd� ����

where �W # $�� �� ��% is the three
dimensional mean vector � and

'W #

�
���
�ii �ij �id

�ji �jj �jd

�di �dj �dd

�
��� j �ij # �ji� �id # �di� �jd # �dj
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is the variance
covariance matrix for Gaussian weighting functionW � Thus� a secondary

feature x is extracted by a Gaussian
weighted sum of co
occurrence matrix elements�

x #
X
i�j�d

W i� j� d�P i� j� d�� ����

The genetic algorithm optimises the form of these weightings� Wv� via the encoding of

three mean and six unique variance
covariance parameters� for each Gaussian weighting�

Typical examples of Gaussian weighting functions are detailed in Figure ���� We show

these in �
D for clarity�

(a) (b) (c)

Figure ���� Typical examples of Gaussian weighting functions� shown in �
D for clarity�
Note that the weightings are symmetric� because we are using symmetric co
occurrence
matrices� a� Equal variances� no covariance� b� Unequal variances� no covariance� c�
Unequal variances� non
zero covariance�

In this work� each GA chromosome C encodes binary information for eight �
D

Gaussian weightings Wv� v # �� � � � � �� representing eight features for classi	cation

purposes� Our choice of eight features is based on two considerations�

� Our experience suggests there are generally a limited number of discriminant areas

in the �
D discrimination space� Evidence for this can be seen in Figure ����

� Extracting larger numbers of features can be counter
productive due to problems

associated with the �curse of dimensionality� Hand ����� Kittler ������ That is� it

is impossible to accurately estimate multi
dimensional feature distributions much

above ten dimensions� without a prohibitively large number of training set data

Friedman ������

�Three of the nine variance�covariance parameters are repeated e	g	 �ij � �ji	
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Using a �� �� �� co
occurrence matrix space P i� j� d�� we encode each of the three

components of the mean vector using four bits�

�Wv
� f�� � � � � ��g�� ����

and encode each of the six variance
covariance elements �st using three bits�

�ss � f�� ���� � � � � ���g� s # �� � � � � �� ����

�st � f�������� � � � � ���g� s # �� �� t # �� �� s �# t� ����

Note that there are a total of nine unique parameters for each Gaussian weight� requiring

a total of �� bits for encoding� These nine degrees of freedom allow precise control of

weighting location and form in �
D space� It is obvious that the approximately ���

possible weighting functions form a far larger set than the �� 	xed feature functions

de	ned in the literature for GLCM�

The choice of minimum variance in equation ���� is an important one needing cla


ri	cation� it is a compromise between strong adaptation to training set data� and the

algorithm�s ability to �generalise� to unseen test data� A low variance value allows form


ation of a highly localised weighting function� excessively �tuned� to the training set�

The resulting secondary feature is mainly comprised of a single co
occurrence element�

Any estimate error� or noise� in this element equally a�ects the resulting secondary

feature� Forming such features can result in algorithm over�training� which is charac


terised by good classi	cation performance on training set data� but poor performance

on test set data� By enforcing a minimum variance criteria� we ensure that a secondary

feature comprises the weighted sum of a su�cient number of elements to avoid such

over
training and reduce feature estimate noise� Our choice of a minimum variance of �

in equation ���� was based on the size of our co
occurrence matrix space ��������

and on empirical evidence obtained during the development of our algorithm�

We show the encoding of a chromosome C with mean and covariance parameter

information in Figure ���� Each of the eight ��
bit binary words in this 	gure hold the

parameters for one �
D weighting function�

The requirement of the GA was to extract eight secondary features by weighted

summation of co
occurrence elements� maximising the 	rst
order discriminatory power

of each feature whilst minimising the cross
correlations between features� Maximising

the joint discriminatory power of the eight features may seem more appropriate� as it

allows the capture of higher
order discriminatory information� However� such a maxim


isation would necessitate using all eight GAoGLCM features in the 	nal classi	cation
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Figure ���� The encoding of mean and variance
covariance parameters in a chromosome�
Each chromosome contains encodings for eight Gaussian feature weightings�

design� Usually� the overall classi	er design will use features from other unrelated ana


lysis methods� and we will want to apply a feature selection process after combining

our eight features� It would be impossible to guarantee that all eight GAoGLCM fea


tures would be selected� Therefore� if the eight features are separately assessed rather

than jointly�� then the process will be more e�ective� We acknowledge that the overall

performance of the classi	er� when based on texture alone� will not be as high� when

compared to using joint discriminatory power as the optimisation criteria� By maxim


ising 	rst
order discriminatory power while minimising correlation� we are attempting

to extract features which will possess discriminatory power no matter how many are se


lected in the 	nal classi	cation system� We can achieve this by expressing our objective

function as

OC� # X
a
����Nv

JaX
b
����a

j�a�bj
� �����

where J # fJag� a # �� � � � � Nv is a vector whose Nv components are discrimination

measures for the Nv secondary features x # fxvg� v # �� � � � � Nv� encoded by chro


mosome C� The components of J are numerically ordered from maximum to minimum

discrimination�

J # $Jmax� � � � � Jmin% � �����

and �a�b is an element of the similarly ordered v  v correlation matrix for feature set

x� Here� we express the worth of any feature set by a weighted sum of the 	rst
order

discriminatory powers of its Nv features� The weighting for each feature is equal to

the inverse of the sum of its cross
correlation measures with its �more discriminatory�

counterparts� as shown in Figure ����� We are e�ectively reducing the contribution to

the objective value O� of a feature�s discrimination measure J � by dividing by the sum of
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its correlations with the other features� Thus� O is maximised by highly discriminatory�

uncorrelated features�

b

Discrimination:

Correlation
matrix 

Weighting-1
 1    1.5  1.2   1.8

= 3.0

Objective value =

1.6+1.1+0.7+0.2

a
Feature number: 1 2 3 4

1.11.6 0.7 0.2

1 1.5 1.2 1.8

c

ρ
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Figure ����� An example of calculating the objective value for a feature set of four vari

ates� Each element of the ordered discrimination vector a� is divided by the sum of
the corresponding feature�s cross
correlations b� with its �more discriminatory� coun

terparts� The objective value for the entire feature set c� is simply the summation of
these weighted discriminations�

The GAoGLCM algorithm follows�

Step �� For each texture image� requantise the image to Ng intensity levels and calculate

co�occurrence matrices at each of the Nd intersample displacements d # �� � � � � Nd�

Step �� Encode Nk chromosomes with random initialisations for each of the Nv  � mean

and Nv  � unique variance�covariance parameters for the Nv features to be

extracted�

Step 
� Develop a suitable objective function O� such as equation �����	� to measure

chromosome worth�

Step 	� Allow the GA to optimise the weighting functions over a suitable number of life

cycles�
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Step �� Determine the chromosome with the highest worth among the Nk chromosomes

of the terminating population� Use the Nv weighting functions encoded in this

chromosome for future feature extraction via equation ����	�

�

��� GAoGLCM Classi�cation Evaluation

We now detail a methodology for comparing the classi	cation performance of the pro


posed algorithm to that of classical GLCM� for the �
class problem�

����� Texture Database

To evaluate the power of our method� we used as test data pairs of grey
scale images

containing visually similar or indistinct textures from several sources�

� Texture pair �� Synthesised Brodatz texture images�

Brodatz texture D�� synthesised using a non
parametric multi
scale non
causal

Markov random 	eld model� This is the same database as set � of the previous

chapter� The technique used to generate the images was based on a multigrid

approach using the Gibbs sampler and a novel pixel temperature function� Full

details can be found in Paget � Longsta� ������ Both class � and class � data

used the same neighbourhood size� however� class � used a texture image generated

at a later iteration in the synthesis process than class �� Photometric resolution

was �
bit and spatial resolution was ���  ����

� Texture pair �� Cervical cell nuclear chromatin texture images�

High
resolution images of cervical cell nuclear chromatin� captured from cytologic


ally normal and abnormal cells� This is the same database as set � of the previous

chapter� Full details of this database can be found in Section ������

� Texture pair 
� Cervical cell nuclear chromatin texture images�

Images of thionine
stained cervical cell nuclear chromatin� captured from cyto


logically normal and abnormal cells� This is a much larger database containing

images of lower resolution than the previous set�
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Synthesised Cell Chromatin Cell Chromatin

Figure ����� Examples of pairs of textures used in the classi	cation trials of GLCM and
GA
optimised GLCM� The top row of images are class � textures� while the bottom row
are class ��

For texture pair �� we extracted a total of ��� image tiles for each class by randomly

sampling the original image� and allowing tiles to overlap� A suitable tile size was chosen

such that both texture methods produced a measurable misclassi	cation rate�

For texture pair �� we used the entire image within the nuclear boundary to extract

co
occurrence matrices� due to the small size of each image�

For texture pair �� we used a much larger database of ��� normal and ��� abnormal

chromatin texture images�� captured at �� optical magni	cation� Once again� we used

the entire nuclear image in the feature extraction process�

����� Feature Extraction

For both the GLCM and GAoGLCM methods� we calculated co
occurrence matrices

from the database images across sixteen spatial displacements� d # �� � � � � ��� For stand


ard GLCM� we extracted the eight secondary features de	ned in Table ��� at each of

the sixteen displacements� from the training and test sets� giving a total of ��� features�

�Supplied by Oncometrics Imaging Corporation Vancouver B	C	 Canada	
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Using the GAoGLCM algorithm de	ned in Section ���� we extracted eight GA op


timised features using an initial population of Nk # �� chromosomes� We allowed each

population to evolve over a total of Ni # ��� cycles� using only training set data for

optimisation� We set GA control parameters for cross
over rate Pc to ���� and mutation

rate Pm to ����� and used an elitist replacement strategy� These choices were based

on work by Grefenstette ����� which recommended similar values following extensive

control parameter optimisation trials�

We used the eight encoded Gaussian weightings Wv� v # �� � � � � � from the 	ttest

chromosome in the terminating population to extract features from the test set data�

����� Feature Preprocessing and Feature Selection

In line with our work of the previous chapters� we used the normality transform discussed

in Section ����� to provide near
Gaussian class
conditioned feature distributions� From

the ���
dimensional GLCM feature set� we selected eight optimal feature sets of � to �

dimensions� using the add
��subtract
� method of feature selection described in Section

������ This was similarly done for the eight GAoGLCM features�

����� Classi�cation

For each analysis method� we used pair
wise ten
fold cross
validated classi	cation to

provide a robust estimation of the real classi	cation error� This procedure was outlined

in Section ������ For completeness� it was necessary to perform feature extraction and

selection on each of the �� training sets� as explained below�

For GAoGLCM feature extraction� it was necessary to determine optimised weighting

functions independently for each of the ten training sets� This is due to the adaptive

nature of the features� i�e�� the exact form of each feature weighting function is training

set dependent� Because standard GLCM feature functions are 	xed and independent of

training and test set partitions� feature extraction need only be completed once on the

entire data set�

For both GLCM and GAoGLCM feature selection� a new feature set was selected

based only on the training set data� The corresponding features of the test set were

then classi	ed�
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��� Results and Discussion

In all three classi	cation trials� GAoGLCM outperformed GLCM with signi	cantly lower

classi	cation error rates� This is clearly shown in Table ���� which details the minimum

error rates achieved by each method� and the corresponding number of features used to

obtain those rates� The 	nal column details the extent of the improvement in classi	c


ation achieved by GAoGLCM�reduction in errors by up to ����� Figure ���� provides

a visual comparison of the performance achieved by the two methods�

GLCM GAoGLCM
Texture Minimum Number of Minimum Number of Error

Pair Error Features Error Features Decrease

� ���� � ���� � ���
� ����� � ���� � ���
� ����� � ����� � ��

Table ���� Comparison of classi	cation performance of the GA
optimised GLCM al

gorithm and standard GLCM� The GAoGLCM algorithm has attained up to ��� de

crease in classi	cation error�

The classi	cation results shown in Figure ���� are expressed as graphs of cross


validated error rate versus feature set size� for feature sets of � to � dimensions� Referring

to these graphs and to Table ���� we can see that GA
adapted features improved clas


si	cation performance� represented by a decrease in cross
validated classi	cation error�

in all three trials� Moreover� performance improved with all feature set sizes from � to

� variates�� For texture pair �� increasing GLCM feature set size deteriorated classi	ca


tion performance�see Figure ����c�� It would appear that the incremental increases in

discriminatory power were not su�cient to overcome decreased class
conditioned PDF

estimation accuracy for the feature variates�a classic example of the �curse of dimen


sionality��

Figure ����a� shows an example of �
D Gaussian weightings optimised by our ge


netic algorithm� We applied this optimisation to co
occurrence matrices extracted from

texture pair � Cytometrics cell data�� The weightings are symmetrical because we used

symmetric co
occurrence matrices� While not clearly visible in this diagram� each left


right half 	 of this �
D �weighting
space� contains eight Gaussian weightings� Analysis

�relative error de�ned as ErrorGLCM�ErrorGAoGLCMErrorGLCM
	

�feature set � of texture pair � excepted	
�separated by the plane i � j � �	
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Figure ����� Comparison of classi	cation performance of the GA
optimised GLCM al

gorithm and standard GLCM�

of the corresponding �discrimination
space� for this data�see Figure ����b��reveals

that the locations of each Gaussian weighting correlate highly with the locations of

high discriminatory power� The algorithm has extracted features across several scales�

adding credibility to the worth of this multi
resolution extension of standard GLCM� We

can also see from the varying size and shape of each weighting that Gaussian weighting

functions allow simple� yet precise� control of feature extraction localisation� Comparing

Figures ����a� and b� raises two important questions�

�� Why were some large regions of high discrimination represented by

more than one weighting function� Why didn�t the GA form one large

weighting in these areas��

Careful examination of Figures ����a� and b� show some large �clumps� of dis


crimination being represented by up to three Gaussian weighting functions� We

believe the reason for this is revealed in Figure ��� of the previous chapter� Co


occurrence elemental features are only highly correlated over small neighbour
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Figure ����� Cross
validated error rate versus feature set size for the three classi	cation
trials� a� Brodatz D� texture� b� Cytometrics cell data� c� Oncometrics cell data�

hoods� Spatially distant elements of a large discrimination clump tend to be

uncorrelated� and therefore provide higher discrimination contribution when used

in separate secondary features� Thus� the GA partitions these large discrimination

clumps in a way that maximises the extracted discriminatory information�

�� Why is one Gaussian weighting localised in an area which appears to

have no discriminatory power�

Our algorithm encodes each chromosome with eight Gaussian weighting functions�

Even if there are a limited number of discriminatory areas� say seven� the GA will

still place the remaining weighting somewhere� even if it is in an area of seemingly
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a� b�

Figure ����� Comparing a �
D discrimination space and the resulting optimised �
D
Gaussian weighting functions� a� An example of optimised �
D Gaussian weightings
optimised for texture pair �� Spheres with higher intensities indicate larger weightings�
b� The �
D discrimination
space of texture pair � data� Spheres with higher intens

ities indicate co
occurrence matrix elements with higher discriminatory power� Note
that the locations of each Gaussian weighting correlate well with the locations of high
discriminatory power�

low discriminatory power! In future research� we may allow the GA to select an

optimal number of feature weightings� based on training set data�

GAoGLCM was able to provide secondary features with higher discriminatory power

because it exploited higher
level knowledge the existence of localised areas of discrim


inatory co
occurrence elements�� This allowed direct targeting of these areas for feature

formation� and provided for the inherent ability of our method to adapt to the type of

texture being analysed� The method of localised summation via Gaussian weighting

functions excludes elemental features with low discriminatory power� and those which

are uncorrelated and therefore possibly more independent and better used as separate

features��

The GAoGLCM algorithm is computationally expensive during the training phase�

as it is an optimisation technique based on a randomised search of a multi
dimensional

solution space� Such techniques are always computationally intensive� but the need to

cross
validate the results exacerbates this drawback� Using N 
fold cross
validation� it is

necessary to train the GA N times� However� the existence of isolated neighbourhoods

of high discriminatory power� and the formation of features from only these areas� allows
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the extraction of most discriminatory information contained within the co
occurrence

matrices� in fewer features than for GLCM� This in turn allows a marked decrease in

feature selection�discriminant analysis computation time� o�
setting some of the increase

mentioned above� Moreover� once a suitable set of optimised weighting functions is

obtained� the classi	cation times for new data are similar to other methods�

��� Conclusions

In Chapter � we introduced a new second
order method of texture analysis called Ad


aptive Multi
Scale GLCM� This method extracted features via a variable summation

of elements in neighbourhoods containing proven high discrimination� as measured us


ing a discrimination matrix� In this chapter� we have presented a new methodology

to optimally extract adaptive secondary features which bypasses the need to explicitly

calculate a discrimination matrix� Based on the knowledge that discriminatory areas

exist across scales in localised neighbourhoods of co
occurrence matrices� we have pro


posed the extraction of features using adaptive �
D Gaussian weightings� We use a

genetic algorithm to determine the location and scale of these weightings� Optimisation

of these weightings allows extraction of features with high discriminatory power and low

correlation�

We have shown that this approach has a number of signi	cant advantages over the

traditional GLCM method� namely�

� The features extracted using GAoGLCM have� on average� higher discriminatory

power and lower correlation than the standard GLCM features de	ned in the

literature�

� As a result� the use of GAoGLCM features can provide signi	cantly lower classi


	cation error rates than standard GLCM�

� The direct targeting of discriminatory areas of co
occurrence matrices allows most

discriminatory texture information to be extracted in fewer features� Extracting

only � GAoGLCM features proved to be far more e�ective than extracting ���

standard GLCM features!

We demonstrated these advantages in trials comparing the performance of GAoGLCM

and GLCM in classifying a range of visually similar images captured from synthetic and

biologic origins� GAoGLCM signi	cantly lowered classi	cation error rates and increased

feature discriminatory power�
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Once again� the applicability of this method is not only limited to GLCM� It can

be extended to any analysis method where a series of matrices are determined via

constraint parameters� such as Neighbouring Grey Level Dependence Matrix Sun �

Wee ������ Grey Level Entropy Matrix and Grey Level Variance Matrix Yogesan ������

or Generalised Co
occurrence Matrices Davis et al� ������

Due to severe time constraints we have been unable to evaluate our method on a

more extensive database of texture types� Also� we need to further investigate GA

design to determine more optimal settings for GA control parameters� such as number

of chromosomes Nk and number of GA cycles� The values of minimum and maximum

variance in equation ���� also needs further investigation to determine if these values

are problem speci	c or generally applicable� However� based on the results obtained� we

can say that the performance so far is very encouraging and worthy of consideration in

any texture analysis application�



Chapter �

Summary and Conclusions

���
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	�� Summary of the Thesis

In this thesis we have presented the results of research and experimental work aimed at

enhancing the machine assisted analysis of cytological specimens� The main body of our

work has concentrated on so
called �smart algorithms� for analysing image texture� and

we have attempted to maintain the general applicability of these methods to applica


tions other than cell analysis� We have con	rmed the e�cacy of our methods by their

application to a range of textures which exist in industry� medicine� and nature� This

chapter contains a summary of the work contained within this thesis� general conclusions

and accomplishments made� and suggestions on further research avenues�

In Chapter � we reviewedmanual and automated cervical cancer screening� and iden


ti	ed avenues for enhancing the performance of current and future automated cytology

systems� We introduced pattern recognition and discussed PR operations typically used

for image analysis� We also provided some detail extended in Chapter �� of speci	c

PR algorithms used to support our texture analysis work throughout this thesis� For

example� in Section ����� we justi	ed our choice of feature selection algorithm� and sug


gested a minor change which facilitates the capture of feature sets with higher
order

discriminatory power� We also presented our preferred method of discriminatory power

measurement the Bhattacharyya discrimination measure�� and quadratic classi	cation�

Finally� we identi	ed texture analysis as an avenue for further exploitation and reviewed

many of the methods widely used in the literature�

In Chapter � we provided a comprehensive review of co
occurrence
based methods

of texture analysis� We discussed the motivations� advantages� and limitations of each

method� and where available� presented the results of comparative studies found in

the literature� We found that several comparison studies were limited due to poor

methodologies which favoured one or another technique� We also found that inter
study

comparisons were di�cult� due to di�erences in evaluation methodology and databases�

We felt that a critical appraisal based on a more uni	ed framework of classi	cation

methodologies and a common� comprehensive� texture database was needed� if stronger

conclusions were required as to the power of each method� However� we did conclude

that the GLCM method of Haralick et al� ����� was one of the most widely used method

of texture analysis� and considered by many researchers as the most powerful method

for general texture analysis� We therefore used the GLCM method as our benchmark

for comparing the performance of the algorithms introduced in subsequent chapters�

Chapter � reviewed the SGF method of texture analysis� The original authors Chen

et al� ����� suggested that the SGF method was more powerful than the GLCM method�

However� we found it to be signi	cantly weaker� due to the limited number of fea
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ture functions two� de	ned by the original authors� We suggested new SGF features

whose de	nitions were based on measuring speci	c properties of the texture types to

be analysed�in our case� chromatin texture� We showed that such manual adaptation

of features can yield signi	cant advantages over other methods based on pre
de	ned

feature functions� namely�

� it allowed better targeting of possible discriminatory texture properties�

� features which were found to be discriminatory provided a far better understanding

of the properties of the texture which discriminated between classes�

� the tailored SGF features used in our classi	cation trial provided classi	cation

performance equal to GLCM features� but with fewer features�

We also provided further details of our PR algorithms which supported the texture ana


lysis work of this and subsequent chapters� For example� in Section ����� we presented

our method of linear image requantisation� and justi	ed our choice by identifying weak


ness of the widely used histogram equalisation method which has detrimental e�ects on

second
order statistical analysis� In Section ����� we presented our method of feature

normality transformation� and demonstrated the usefulness of this method when using

normality
based parametric methods of feature analysis and classi	cation�

Our success with manual adaptation of feature functions motivated further research

into methods of self�adaptive feature extraction� In Chapter � we commenced a theoret


ical investigation into why discriminatory power was manifested in some GLCM features

but not in others� Using a discrimination matrix� we were able to show that discrim


inatory power was expressed in only localised areas of co
occurrence matrices� GLCM

feature functions which� by chance� weighted these discriminatory areas highly� also pos


sessed high discrimination� The discrimination matrix provided us with our 	rst avenue

for self
adaptive feature formation� By using the matrix values as a second weighting

function� we could increase the discriminatory power of the majority of GLCM�s pre


de	ned features� We attained up to ��� decreases in classi	cation error when applying

our proposed method to classifying a database of regularly stained cervical cell nuclei�

In Chapter � we completely removed our method�s reliance on the 	xed feature

functions of GLCM� Rather than using the discrimination matrix as a weighting to be

applied in addition to the 	xed weightings of GLCM� we used the matrix alone as a basis

for de	ning new feature functions� We used the discrimination matrix and measures of

GLCM element correlation to de	ne neighbourhoods of GLCM elements which� when

summed� formed new features for texture classi	cation� Because we only targeted areas

of high discriminatory power� we were able to capture most of the discriminatory power
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contained in the matrices in far fewer features� The discrimination matrices explicitly

showed the existence of discriminatory texture information across several spatial scales or

resolutions� This led to the extension of our method to simultaneous multi
scale analysis�

We then critically appraised our Adaptive Multi
Scale GLCM by applying it to the

classi	cation of a range of textures from nature� industry and medicine� When compared

to standard GLCM� our method attained signi	cant decreases in misclassi	cation error

of between �� and ����

We introduced a method of optimised� self
adaptive multi
scale feature extraction

for texture analysis in Chapter �� Based on AMSGLCM� we used a Genetic Algorithm

to search a multi
dimensional Gaussian weighting space for extracting co
occurrence

features� Using a suitable GA objective function� we were able to successfully extract a

group of features which were optimised for high discrimination and low feature correl


ation� Our choice of Gaussian weights allowed precise control of weighting localisation

and shape in multi
dimensional weighting
space� using a minimum of control paramet


ers� An advantage of this method over AMSGLCM is that it does not require the explicit

calculation of discrimination matrices at each of the spatial resolutions being analysed�

Once again� we critically appraised our GA
optimised GLCM GAoGLCM� by apply


ing it to the classi	cation of synthetic and biological textures� We attained signi	cant

decreases in misclassi	cation error of up to ��� when compared to standard GLCM

features�

	�� Thesis Discussion

The techniques presented in this thesis represent the evolution of our research over the

last three and a half years� The ordering of the chapters is approximately in line with

our advances in adaptive analysis methodology� from basic manual feature adaptation in

Chapter �� to fully automated self
adaptive� multi
resolution� optimised texture analysis

in Chapter �� Our journey began by showing the bene	ts of adaptive feature extraction�

using manually de	ning feature functions speci	c to cell chromatin analysis Chapter ���

By doing so� the de	ned features yielded far greater understanding of the pathological

processes which accompany cell carcinogenesis than many other current methods of

texture analysis using problem
independent features� The weakness of this technique is

in its lack of general applicability to other texture classes without human intervention�

The requirement to de	ne and hand
code feature functions i�e�� manual adapta


tion� provided the motivation to further investigate a completely new approach which

required no human interaction i�e�� self
adaptation�� By theoretically analysing dis
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criminatory power manifestation in co
occurrence matrix secondary features� we were

able to implement a self
adaptive approach to enhancing the discriminatory power of

currently used feature functions Chapter ��� Here� we introduced the discrimination

matrix� which quantitatively measures the discriminatory power of each co
occurrence

matrix elemental feature� after it has been weighted by one of the standard feature

weighting functions de	ned in the literature� We were able to show that the discrim


inatory power of each weighted feature directly in�uenced the discriminatory power of

a secondary feature comprised of the sum of these weighted features Appendix A������

Thus� by using the discrimination matrix as a further weighting function� we were able

to increase the contribution made by highly discriminatory elemental features� to the

secondary feature� In this way� the discriminatory power of the secondary feature was

increased�

At this point we should enter a word of caution about over�training and its relation


ship to the discrimination matrix and adaptive methods� All datasets contain estimate

errors� a natural consequence of 	nite sample size� We are� of course� speaking here in a

statistical sense� meaning that sampled distributions can not completely capture the true

statistical nature of real data� Because the discrimination matrix is determined directly

from sampled data� it too contains estimate errors in its discrimination measures� This

error is exacerbated further by elemental features whose distributions are not Gaussian

we have used normality
based discriminatory power measures�� Thus we need to ensure

that the measured discriminatory powers are an accurate representation of those which

exist for real data� and are not some artifact present only in the dataset�a result of

over
training� or �tuning� the algorithm too much to the dataset� To this end� we have

always applied normality transformation to feature distributions prior to discriminatory

power estimation� More importantly� we have ensured that discriminatory power meas


ures as well as feature selection and classi	er design� were independent of test set data�

That is� no test set data was used during algorithm training�

The method of self
adapting standard feature functions Chapter �� proved very suc


cessful� and resulted in truly outstanding decreases in classi	cation error� The technique

is computationally light� requiring only ��� discriminatory power calculations for each

discrimination matrix using �� grey
level requantised images�� It can be easily imple


mented into PR systems to enhance the discriminatory power of any GLCM features

which may be used� Finally� our method is easily extended to other co
occurrence
based

and more general analysis techniques�

Introducing the AMSGLCMmethod of Section � removed the reliance of our previous

method on pre
de	ned feature functions� which we identi	ed as being a fundamental

weakness of standard analysis methods� Extending the discrimination matrix to the
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scale domain was a natural step which allowed the incorporation of more higher
level

knowledge�that of multi
resolution discrimination variation� We now not only had a

greater number of elemental features from which secondary features could be formed

thus reducing estimate errors�� we also had far greater �exibility in choosing which

elements to use to form summed secondary features� In e�ect� the discrimination space

showed directly how many elements to use for feature formation� and showed which

elements to use to ensure capturing the most texture information� This led to a fully

self
adaptive method incorporating multi
scale texture information� which attempted to

optimise the capture of texture information� yet which required no human intervention�

Using a three
dimensional discrimination space resulted in a small increase in com


putational expense� It was now necessary to calculate N�
g &Ng� �Nd�� discrimination

measures�a total of ���� in our implementation� Computational cost was further in


creased by the need to cross
validate the classi	cation process� The above process needed

to be repeated a total of ten times for ten
fold cross
validation� This cost is unavoidable

if we are to maintain robust classi	er training and performance evaluation methodolo


gies� On a positive note� directly targeting discriminatory elemental features facilitates

capturing discriminatory information in far fewer features than in traditional methods�

As a result� the computational cost of feature selection can be reduced� Furthermore�

computational cost is only high during classi	er design� After training and evaluation�

classi	cation times on new� unseen data are similar to existing techniques�

GA
based feature extraction Chapter �� extends the work of the previous chapter�

and represents the most recent evolution of our approach to self
adaptive� multi
scale

texture analysis� This extension allows far greater �exibility in the size and shape of

neighbourhoods from which elements are to be summed to form secondary features� In

AMSGLCM� these neighbourhoods were con	ned to a three
dimensional cubic neigh


bourhood based on element correlation� For GAoGLCM� these neighbourhoods are

de	ned by Gaussian weighting functions with full �exibility in all three domains of

the co
occurrence space� The extension also allows optimising the extraction process

based on explicit criteria�discriminatory power and feature correlation criteria in our

implementation�

The biggest impediment to our method is its computational expense� On a DEC

AlphaStation ���� a single GA training session takes around one day� As a result�

full cross
validated classi	cation evaluation takes over one week� However� as with

AMSGLCM� after training and evaluation� classi	cation times on new unseen data are

similar to existing techniques�

At this point it seems appropriate to compare the performance of the AMSGLCM

and GAoGLCM algorithms� Obviously the GAoGLCM approach is far more computa
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tionally expensive� both in terms of time and storage requirements� because it involves

a parameter
based optimisation in a highly complex solution space� Computation time

and storage requirements during the training phase are approximately an order of mag


nitude greater than for AMSGLCM� After training however� both techniques have com


putational cost which is similar to existing techniques� Classi	cation performance can be

determined by comparing the two texture types which were trialed for both techniques�

�� synthesised Brodatz texture D��texture pair � for AMSGLCM and texture pair

� for GAoGLCM�

�� Cytometrics cell database�texture pair � for AMSGLCM and texture pair � for

GAoGLCM�

We compare these results in Figure ��� Based on the classi	cation results� the GAoGLCM
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Figure ���� Comparing classi	cation error rates for AMSGLCM and GAoGLCM� Clas

si	cation errors are decreased by an average ��� when using the GAoGLCM technique�

method has attained an average ��� decrease in classi	cation error when compared to

AMSGLCM� This is probably due to its ability to extract features which are optimised

for high discriminatory power and low correlation� More comparison trials on a wider

range of texture types will need to be run before stronger conclusions can be drawn�

However� we would suggest that the GAoGLCM be used if computational cost is not of

signi	cant concern�
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	�� Thesis Contribution

This thesis presents a comprehensive analysis of statistical texture analysis methodolo


gies� and introduces several new approaches to optimised feature extraction� Here� we

describe the main contributions made by this thesis� chapter by chapter�

A contribution of this thesis is our extension of the SGF algorithm to analysing

cell nuclear chromatin� We have shown the bene	ts of manually adapting feature func


tions to suit speci	c texture properties by an increase in classi	cation performance and

decrease in feature set dimensionality� But perhaps of greater signi	cance is the fact

that de	ning feature functions which measure speci	c image properties has allowed a

far better understanding of the cytological properties which manifested the discrimina


tion between normal and abnormal classes� This cannot be said for most other analysis

methods�

One of the main contribution of this thesis was our presentation of several related

methodologies for optimised� multi
scale� self
adaptive feature extraction� All are based

on locating areas of discriminatory power among texture descriptors extracted across a

range of spatial resolutions� In Chapter � we introduced the discrimination matrix�a

two
dimensional matrix which� for the 	rst time� provided a direct indication of the

potential �worth� or usefulness of each co
occurrence matrix element for classi	cation

purposes� The spatial arrangement of discriminatory information within the matrix

also suggested possible approaches to using such information for enhancing the discrim


inatory power of currently de	ned feature functions� The success of our approach was

demonstrated by signi	cant decreases in classi	cation error of over ����

Chapter � introduced what we believe is the 	rst self
adaptive multi
scale feature

functions for use with co
occurrence
based methods of texture analysis� Our method

placed no reliance on pre
de	ned 	xed feature functions� unlike all other co
occurrence


based methods published in the literature� In fact� feature de	nition was based solely

on the speci	c statistical di�erences between texture classes� Furthermore� our method

is possibly the 	rst co
occurrence
based technique to provide simultaneous analysis of

texture across several spatial resolutions� Once again� the technique attained signi	cant

increases in classi	cation performance across a wide range of texture types�

Chapter � introduced what we consider to be the 	rst application of optimisation

techniques to the extraction of co
occurrence matrix features� without the use of neural

network
based methods� While neural networks have been used in the past to classify

texture data� this �black
box� approach often provides little theoretical guide as to the

image properties that are producing the classi	cation result� The GAoGLCM method

allows direct analysis of the optimised feature functions and� using the remapping tech
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nique described in Appendix B� the location of areas within images which produce any

discriminatory information between classes� Moreover� by suitable objective function

design� we can choose to optimise feature functions under a number of criteria� includ


ing correlation considerations� 	rst
order or joint discriminatory power� etc�

We should emphasise that� while the adaptive methods of Chapters �� �� and � were

applied to GLCM co
occurrence matrices� their applicability is not restricted to this

method of analysis� They can equally be applied to any analysis method where a series

of feature vectors or matrices can be extracted via a suitable constraint parameter�

In Appendix B� we demonstrated another signi	cant bene	t of the discrimination

matrix for image analysis� Discriminatory features derived from conventional analysis

methods usually provide only qualitative cues as to the characteristics of images which

di�er statistically between classes� such as image contrast� entropy� or energy� By using

the information contained in the discrimination matrix� we can directly locate actual

areas within an image which provide such discriminatory information� We demonstrated

this in Appendix B by �remapping� discrimination matrix co
ordinates to actual image

pixels� Examining actual areas of an image which provide discriminatory power allows

a far better understanding of the processes or physical attributes of image objects which

di�er between classes� We believe this is the 	rst demonstration of this capability�

	�� Fundamental Limitations

Although this thesis claims an original and signi	cant contribution to the 	eld of pattern

classi	cation� there are some limitations to the outlined techniques� and several research

questions which remain unanswered� We hope that this thesis is the genesis for such

further research�

� The discrimination matrix represents the �worth� of each co
occurrence matrix

elemental feature� by measuring 	rst
order discriminatory power� However� it is

known that features which do not exhibit 	rst
order discriminatory power may� in

fact� exhibit higher
order discriminatory power� as demonstrated in Section ��� on

page ���� It may be advantageous to measure the true worth of elemental features

by considering both 	rst and higher
order discriminatory power� Computing such

higher
order discriminatory power quickly becomes prohibitive above powers of

two� For example� for symmetric Ng  Ng co
occurrence matrices calculated at

Nd displacements� there are a total of N�
g &Ng� �Nd�� unique elemental features

P i� j� d�� Thus there are a total of approximately N�
g &Ng��Nd���� feature pairs
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for which second
order discriminatory power measurements are required� Clearly�

third and higher
order calculations are infeasible�

� The self
adaptive methods of feature extraction introduced in Chapters � and �

rely on the existence of localised groups of discriminatory elements� It is currently

unknown to what degree performance will be a�ected if discrimination is only ex


hibited in isolated individual elements� However� because of the reasons discussed

in Section ��� neighbouring co
occurrence elements being measures of similar im


age properties� and therefore being highly correlated in general�� it is unlikely that

textures which exhibit such characteristics are common� Highly regular textures

containing strong gradients such as some fabricated structures�� which produce

highly structured co
occurrence matrices with vastly di�erent statistics for neigh


bouring elements� may not produce signi	cantly better performance than GLCM

and other common techniques�

� The AMSGLCM algorithm of Chapter � used a three
dimensional neighbourhood

constraint of equal dimensions in both the co
occurrence domain i� j� and the

scale domain spatial displacement d�� We determined this cubic neighbourhood

by measuring the average pair
wise correlation between all element pairs in the

�
D stack of co
occurrence matrices� We realise that there is no direct relationship

between the co
occurrence axes i� j and the scale axis� For this reason� it may

be more appropriate to determine neighbourhood size independently in the scale

domain by only measuring correlation between element pairs from di�ering spatial

constraints d� That is�

Corrdd� # E
n
�
�
P i� j� d��� P i� j� d��

�
j d� � d�� # dd

o
� ����

where dd is the element pair displacement in the spatial displacement domain d�

� As mentioned in Chapter �� time constraints have not allowed the GAoGLCM

technique to be fully evolved� An area that needs further research is in the cor


respondence between the eight weighting functions across each of the ten cross


validation trials� We have noticed that� on some occasions� the locations of some

of the eight feature weightings di�ered between trials� This may be due to two

causes�

�� The di�erences between the elemental feature statistics P i� j� d� of each of the

ten cross
validation sets� While these di�erences are a natural consequence

of the random partitioning of the dataset� ideally the algorithm should be

invariant to these di�erences� If this is indeed the problem� it suggests that
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the GA is not generalising su�ciently� and is thus too highly tuned to the

training set�

�� The GA is not 	nding a globally optimal solution� but is 	nding a di�erent

locally optimal solution for some of the cross
validation training partitions�

Given that each solution is represented by a ��
bit binary chromosome� we

have a solution space of cardinality ���! This solution space is searched by

the GA a total of Nk # ��Ni # ��� # �� ��� times in our implementation�

which may not be su�cient�

We can test for �� by trialing the GA multiple times on the same training set�

If there is variation in any of the solutions� it indicates an optimal solution is not

being found by the GA� This would suggest that we need to further investigate GA

control parameters such as number of iterations Ni and number of chromosomes

Nk� to ensure that a globally optimal result is attained�

If we 	nd stable solutions after running this test� it would suggest that indeed�

the GA is not generalising su�ciently� Therefore� we need to further increase the

minimum variance criteria �min for the Gaussian weighting functions� as discussed

on page ���� This will ensure that secondary features are comprised of a larger

number of elemental features� which helps to average any estimate noise introduced

by the partitioning of the data set�

However� based on our results� we can conclude that�

� even locally optimal solutions provide signi	cant bene	ts over more tradi


tional methods such as GLCM� and

� even further improvements in classi	cation performance may be attained�

because some of the results presented may represent sub
optimal solutions�

� We mentioned in Chapters � and �� that the AMSGLCM and GAoGLCM al


gorithms are applicable to a wide variety of existing techniques� where a series of

matrices are determined via constraint parameters� To con	rm this general applic


ability� we expect to apply our adaptive methods to techniques such as NGLDM

Sun �Wee ������ Yogesan�s GLEM and GLVMmethods Yogesan ����� or GCM

Davis et al� ����� in future research�
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A���� Proof that the discriminatory power of a ��D feature

set is always greater than or equal to the discriminatory

power of a ��D feature formed by the summation to the

two individual features�

As discussed in Section ���� we are faced with the question of when to sum elemental co


occurrence matrix features to reduce feature set dimensionality� and when to leave them

separate to maintain or increase discriminatory power�� We will consider the case of a

feature containing two variates� and whether to sum together the individual variates to

form a �
D feature� from the point of view of maintaining overall discriminatory power�

Extensions to the n
D case are straightforward�

For mathematical tractability we consider a simpli	ed form of a discrimination meas


ure� used as the basis for discrimination metrics such as the Bhattacharyya� Divergence�

Mahalanobis and Matsushita metrics�

J # �� � ����� &���
���� � ���

T� A���

where the row vector �c # $��� � � � � �Nv % is the class
conditioned mean vector of feature

set x� and �c is the variance
covariance matrix� Equation A��� is simply a measure of

the distance between the means of the multivariate PDFs of the two classes� normalised

by the class
conditioned variance
covariance matrices�

Notation

c is the class index� c � f�� �g�
v is the feature or variate index� v � f�� �g�
xc�v is the vth feature vector for class c�

�c�v is the sample mean of feature v for class c�

�c�v�v� is the covariance of features v� and v� for class c�

B # ���� � �����

C # ���� � �����

Av�v� # ���v�v� & ���v�v� � and A�� # A�� # A for covariance matrices�

J�D is the discriminatory power of the summed features xc�� & xc���

J�D # Jx��� & x��� � x��� & x�����



���

J�D is the joint discriminatory power of the �
D feature set xc # $xc��� xc��%�

J�D # J
�
$x���� x���% � $ x���� x���%

�
�

��D case

When the two features are summed to form a �
D feature� we can show from equation

A��� that

J�D #
���� & ������ � ����� & ��������� & ����� & ���� & ������

����� & ����� & ������ & ����� & ����� & ������
A���

#
B & C��

A�� &A�� & �A��
A���

#
B & C��

A�� &A�� & �A
� A���

��D case

When the two features are left as a �
D feature� we can show from equation A���

that

J�D �

�
���� � ����

���� � ����

�T �
����� � ����� ����� � �����

����� � ����� ����� � �����

��� �
���� � ����

���� � ����

�
�A�	�

�

�
B

C

�T �
A�� A��

A�� A��

��� �
B

C

�
�A�
�

� �B�C�

�
A�� �A��

�A�� A��

�

�A��A���� �A��A���

�
B

C

�
�A��

�
�B�A�� �BCA�� � BCA�� � C�A���

A��A�� �A��A��
�A���

�
�B�A�� � �BCA � C�A���

A��A�� � A�
� �A���
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Sum the features
 or leave as separate variates�

We use the decision rule

J�D � J�D �
��
� sum

separate
A����

to determine whether the pair of features are summed to form a univariate feature� or

left separate and used as two individual features� We can re
express equation A���� in

terms of equations A��� and A��� thus�

B & C��

A�� &A�� & �A
�

B�A�� � �BCA& C�A���

A��A�� �A�
�
��
� sum

separate
A����

Expanding equation A���� gives

B�A��A�� � B�A� & �BCA��A�� � �BCA� & C�A��A�� �C�A�

� B�A��A�� &B�A�
�� & �B�AA�� � �BCAA��� �BCAA��

� �BCA� & C�A�
�� & C�A��A�� & �C�A��A�

��
� sum

separate�
A����

�B�A� & �BCA��A�� � �BCA�� C�A�

� B�A�
�� & �B�AA�� � �BCAA��� �BCAA��

� �BCA� & C�A�
�� & �C�A��A�

��
� sum

separate�
A����

Reducing this further and multiplying by 
�� gives

B�A&A���
�� �BCA�&AA��&A��A��&AA��� &C�A&A���

� � � �
��
� sum

separate�

A����

This can be reduced to

 BA&A���� CA&A��� �
�
� ��

��
� sum

separate
A����

Clearly� the left
hand term of equation A���� can never be less than �� This proves

that the summation of features will never result in an increase in discriminatory power
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above that of their joint discriminatory power�

A���� Proof that summing features with similar distribution

statistics results in minimal loss of discriminatory power�

The left hand term of equation A���� expresses the relative loss of discriminatory power

which results when two feature variates are summed to form a single univariate feature�

The larger the magnitude of this term� the greater the loss of discriminatory power�

LossJ # jBA&A���� CA&A���j� A����

where LossJ represents the relative loss in discriminatory power resulting from the sum


mation� Readers will remember our methodology for reducing the N�
g  Nd elemental

co
occurrence features to a smaller number of dimensions with minimal loss of discrim


inatory power� was to sum together neighbouring features� because these were measures

of similar image properties� As such� they had similar class
conditioned statistics and

were thus highly correlated� Here� we wish to show in a more theoretical sense that such

an approach does� indeed� minimise loss while reducing feature set dimensionality�

As the similarity between a pair of neighbouring elemental features increases� B � C

and A�� � A�� � A� In the limit as the feature statistics become identical� we can re


express equation A���� as

LossJ # BA&A��BA&A� A����

# ��

Clearly� the more similar the feature variates to be summed� the lower the loss of dis


criminatory power�

A���� Proof that the discriminatory power of a summed fea�

ture can be expressed in terms of the discriminatory

powers of the individual variates

From equation A���� we can express the discriminatory powers� J� and J�� of the two

feature variates xc��� xc�� as

J� #
B�

A��
� A����
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and

J� #
C�

A��
� A����

From equations A���� and A���� we have

B� # J� A��� A����

C� # J� A��� A����

Re
expressing equation A��� in terms of equations A���� and A���� gives

J�D #

p
J�A�� &

p
J�A����

A�� &A�� & �A
A����

J�D #
J�A�� & �

p
J�A��

p
J�A�� & J�A��

A�� &A�� & �A
� A����

Clearly� the greater the discriminatory power of the univariate features J�� J�� the

greater the discriminatory power of the resulting summed feature J�D�
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Locating areas of an image which provide discriminatory power


by using the discrimination matrix�

Section ��� indicated that it was possible to use the discrimination matrix to locate

discriminatory areas within the images being analysed� thus providing a link between

the statistical di�erences between two texture images and their corresponding physical

or morphological di�erences� We can easily demonstrate this by the following example�

We take two copies of the same texture� representing two texture classes� and modify

the second
order statistics of the second image� For this example� we choose the texture

Tiles����� from the VISTEX Vision Texture Database Picard et al� ������see Figure

B��� Both images are requantised to �� grey levels in order to calculate ��  �� co


occurrence matrices� The second
order statistics of the second image are modi	ed in

the following way�

� for each pair of pixels with intensities i # � and �� separated by a displacement of

d # �� we change the second pixel of the pair to intensity j # ��

� k� l �D� jjk � ljj # �� s�t� Ik� # �� Il� # �� Il�� � i� Rand � ����

B���

where k and l are valid image co
ordinates� I is an image of domain D 	 Z��

jj�jj represents the norm of a vector in �
space� and Rand is a uniformly distrib


uted random variable� The second
order statistics of the image are such that

intensity pairs ���� are far more common than intensity pairs ����� The modi	c


ation de	ned in this equation has the e�ect of grossly modifying the second
order

grey
level joint
probability P �� �� of the image� and any co
occurrence matrices

calculated from the image� To maintain the 	rst
order statistics of the image� we

change a randomly chosen pixel with intensity � to intensity �� for each � � �

change� Such a simple modi	cation method also results in slight changes to other

second
order statistics� however� the dominant change occurs at P �� ��� The in


tensity pair �� �� was chosen because it represented perforation edge pixels in the

images areas of high gradient�� which are clearly visible�

As we will show� the resulting changes make negligible visual di�erence to the original

image� That is� the texture images for class � and class � remain visually indistinct�

To calculate the discrimination matrix for this texture pair� we extract ��� texture

tiles of ���� pixels from both texture classes� Co
occurrence matrices for each of these

tiles are extracted� and the discriminatory power of each matrix element calculated as

discussed in Section ���� The resulting discrimination matrix is shown in Figure B���
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Figure B��� Texture TILE����� from the VISTEX database�

We can see that the second
order statistic P �� �� clearly shows high discriminatory

power� as expected� To link this statistic back to a physical property of the textures�

it is simply a matter of searching the images for the occurrence of pixel pairs with

intensities � and �� separated by a displacement of � pixel� The results of this search are

detailed in the right
hand image of Figure B��� where the corresponding pixel pairs are

marked� The mapping has correctly located the perforation edge pixels�the only areas

of the image with signi	cant gradient� We believe this to be the 	rst demonstration

j
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2 4 6 8 10 12 14 16
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Figure B��� The resulting discrimination matrix for the two texture image classes� We
can clearly see that the second
order statistic P �� �� exhibits high discriminatory power�



��

of discriminatory power localisation in images� The technique should prove to be a

valuable tool for use in the areas of image analysis and understanding�

Texture 1 Texture 2 Discriminate areas

Figure B��� Mapping a statistical di�erence back to physical areas of an image� The
left and centre images show the two texture classes� The image on the right shows the
physical areas of the two images which di�er� For clarity� we show only a ������ pixel
area of the original ���  ��� images�
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Connectivity in digital images traces its roots to set theory and topology� and relies

on an understanding of terms such as paths� ��connected� and components etc� Let S

denote any subset of integer points i� j� in an image lattice� A ��path is any N
tuple of

points in� jn�� n # �� � � � � N where N � �� and for all n the pair in� jn�� in��� jn��� are

horizontal or vertical neighbours� That is�

���in � in��� & jn � jn���
��� � �� �n� C���

Similarly� an ��path is any N
tuple of points in� jn�� n # �� � � � � N where N � �� and

for all n the pair in� jn�� in��� jn��� are horizontal� vertical� or diagonal neighbours�

That is�

max
n
jin � in��j� jjn � jn��j

o
� �� �n� C���

Any pair of points i�� j��� i�� j�� in S are said to be ��connected if there exists in S a

�
path having i�� j�� as the 	rst point and i�� j�� as the last point� If there exists in S

a �
path containing all elements of S� then S is called ��connected� containing only one

�
connected component known as a ��component� �
connected components are similarly

de	ned�

In SGF terminology� a �
component S in binary image Ib is simply a �
connected

region whose pixel intensities are either all ���
valued or ���
valued for binary images

Ib�� That is�

Ibi� j� # �� �i� j� � S� C���

or

Ibi� j� # �� �i� j� � S� C���

Set theory dictates that� if �
connectivity is used to describe a set S� then �


connectivity is used for the set�s complement S�� and visa
versa� This is intuitively

appealing� since if we consider a pair of diagonally adjacent neighbours in S are not

connected and therefore not touching i�e�� �
connectivity�� then the complementary pair

of neighbours belonging to S� should be regarded as touching i�e�� being �
connected��

This arrangement is shown in Figure C��a�� In a practical sense� this is easy to visualise

if we consider foreground regions being placed on a continuous background�foreground

regions that are separated must be separated by background� as shown in Figure C��b��

Rosenfeld ����� points out that without such dual connectivity� Euler�s theorem of

polygonal networks breaks down� Further discussion can be found in Latecki ������

Applying complementary connectivity to digital images can lead to serious rami	c


ations when applied to quantitative and qualitative measurement of image properties�
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1
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a� b�

Figure C��� An illustration of the complementary nature of connectivity in digital im

ages� a� If we consider a pair of diagonally adjacent neighbours are not connected and
therefore not touching i�e�� �
connectivity�� then the complementary pair of neighbours
should be regarded as touching i�e�� being �
connected�� b� Separate foreground regions
on a continuous background�

In terms of cervical cell analysis as proposed in this thesis� it means that the de	nition

of a chromatin clump or region is di�erent for euchromatin and heterochromatin� There

is no intuitive reason to consider euchromatin clumps as being� say� �
connected� yet

heterochromatin clumps as being �
connected� Moreover� such a situation results in fea


ture measures which cannot be compared between the clump types euchromatin and

heterochromatin�� For example� consider a nucleus with clump arrangement as shown

in Figure C��� If we consider �
connectivity for euchromatin and �
connectivity for het


erochromatin� the nucleus would be considered as having � heterochromatin clumps of

area A� yet having only one euchromatin clump with area �A� Features such as NCA

and CAREA Section �� which measure the number of clumps per unit nuclear area�

and average clump area� respectively� would provide vastly di�erent measures for the

two clump types� Clump irregularity measures on these regions would also yield wildly

di�erent results� despite both regions being equivalent�

It would be better to consider a nuclear image as being comprised of two types of

regions which are both separate and equivalent entities� rather than to consider the image

to consist of euchromatin foreground clumps over a background of heterochromatin� as

Figure C��b� espouses� While this approach may mean that set theory rules and Euler�s

theorem are not completely satis	ed� the bene	ts of such an approach� in terms of image

understanding� far outweigh this disadvantage�



�

EuchromatinHeterochromatin

Euchromatin Heterochromatin

Figure C��� The representation of euchromatin and heterochromatin clumps in digital
images is best modelled using �
connectivity for both clump types�
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Several salient features of the measure IRGL page ��� require discussion� One

measure of a region property closely related to irregularity is circularity or compactness�

based on the perimeter P and area A of a region�

circularity #
Pp
�
A

� D���

It can be seen that� for a circular region of radius r�

circularity #
�
rp
�

p
A

D���

#
�
rp

�

p

r�

# ��

A somewhat undesirable result of this de	nition is that larger measures of circularity

indicate less circularity� Rede	ning and renaming this feature to irregularity is more

appropriate� From equation D���� the irregularity of a circular region is now�

irregularity #
�
rp
�
�
p
A
� � D���

#

p

rp
A
� �� D���

where r is now de	ned as the distance from the centre of gravity of the region to the

farthest point on the perimeter�

r # sup
�x�y��A

q
x� (x�� & y � (y��� D���

(x #
Z
A
x dx� (y #

Z
A
y dy� D���

The additional �� de	nes the irregularity of a circular area to be �� which is intuitively

appealing�

On a digital grid� equations D��� and D��� become

irregularity #

p

max

i�R

q
xi � (x�� & yi � (y��

p
A

� � D���

where R is the set of indices of pixel co
ordinates in the region� We can de	ne region

area A as

A # jRj� D���
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the cardinality of R or the number of pixels in the region��

Using a digital grid introduces problems when dealing with regions containing only

a single pixel�

irregularity #

p

max

i�R

q
xi � (x�� & yi � (y��q

jRj
� � D���

#

p

��

�
� �

# ���

Chen et al� overcame this problem by the addition of a ��� term to the numerator�

IRGL #
� &

p

�max

i�R

q
xi � (x�� & yi � (y��q
jRj

� �� D����

where

(x #

X
i�R

xi

jRj � (y #

X
i�R

yi

jRj � D����

De	ned in this way� the measure of irregularity has a number of salient characteristics�

�� For single pixel regions� the measure becomes�

IRGL #
� &

p

��

�
� � D����

# ��

�� As the radius of a circular region tends to in	nity� or alternatively� as the sampling

grid spacing  approaches ��

IRGL # lim
	��

	
BB

� &

p

�max

i�R

q
xi � (x�� & yi � (y��q
jRj

� �


CCA D����

# lim
	��

	
BB
 �q

jRj
&
p


max
i�R

q
xi � (x�� & yi � (y��q

jRj
� �


CCA

# � & �� �

# ��
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�� The measure IRGL is invariant under rotation and translation�

This can be easily seen� because jRj and max
i�R

q
xi � (x�� & yi � (y�� remain con


stant�
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Table E��� Commonly
used GLCM features�

Features Equations
Energy� F� #

P
i�j P i� j���

Entropy� F� # �Pi�j P i� j� logP i� j��
Homogeneity� F� #

P
i�j

�
���i�j��

P i� j��

Inertia� F� #
P

i�ji� j��P i� j��

Correlation� F� # �Pi�j
�i��x��j��y�

�x�y
P i� j��

Shade� F� #
P

i�ji& j � �x � �y��P i� j��
Prominence� F� #

P
i�ji& j � �x � �y��P i� j��

Variance� F� #
P

i�ji� �x��P i� j�

Sum Average� F� #
P�Ng

i
� iPx�yi�

Sum Entropy� F�� # �P�Ng

i
� Px�yi� logPx�yi�

Sum Variance� F�� #
P�Ng

i
� i� F���Px�yi�

Di�erence Average� F�� #
PNg��

i
� iPx�yi�

Di�erence Entropy� F�� #
PNg��

i
� �Px�yi� logPx�yi�
Di�erence Variance� F�� #

PNg��
i
� i� F����Px�yi�

Information Measure� F�� # F��HXY �
max�HX�HY �

Coe�cient of Varaition F�� # ��P �i�j�
��P �i�j��

Peak Transition Probability F�� # maxP i� j��
Diagonal Variance F�� # variance of P i� j�

Diagonal Moment F�� #
P

i�j ���ji� jjP i� j��
�
�

Second Diagonal Moment F�� #
P

i�j ���ji� jjP i� j��
Triangular Symmetry F�� #

P
i�j jP i� j�� P j� i�j

�x #
P

i i
P

j P i� j�� �y #
P

j j
P

i P i� j��
�x #

P
ii� �x��

P
j P i� j�� �y #

P
jj � �y��

P
i P i� j��

Pxi� #
P

j P i� j�� Pyj� #
P

i P i� j��
Px�yk� #

P
i�j j i�j
k P i� j�� Px�yk� #

P
i�j j ji�jj
k P i� j��

HX and HY are the entropies of Pxi� and Pyj� respectively�
HXY � # �Pi�j P i� j� logPxi�Pyj���
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�������������������������������������������������

� Maple V code for quadratic surface fitting

� of lower half of the GLCM matrix

� f�i�j� is the surface to be fit

� g�i�j� is the fitted surface

� A�B�C�D�E�F are surface coefficients

�������������������������������������������������

Surf�Error��sum�sum��f�i�j��g�i�j���	�j�
��i�� i�
��N��

g�i�j���A�i�	B�j�		�C�i�j	�D�i	�E�jF�

�Differentiation

dA��diff�Surf�Error�A��

dB��diff�Surf�Error�B��

dC��diff�Surf�Error�C��

dD��diff�Surf�Error�D��

dE��diff�Surf�Error�E��

dF��diff�Surf�Error�F��

�Solve for the � coefficients

exp	��solve��dA�dB�dC�dD�dE�dF���A�B�C�D�E�F���

assign�exp	��

��������������������������������������������������

� Matlab code for quadratic surface fitting

� of lower half of the GLCM matrix� using the six

� closed�form solutions for A�B�C�D�E�F from Maple

��������������������������������������������������

function �maskfit�se��Fit�quad�mask��

�function �maskfit�se��Fit�quad�mask��

�Fits a quadric surface estimate to an inputted mask�

��maskfit� is the fitted surface

��se� is the squared error

N�
�� �co�occurrence matrix order

se��� �mean square error

z�zeros�
���

f�mask�
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�define constants which simplify the expressions

�for A�B�C�D�E�F from Maple

s
��� s	��� s���� s���� s���� s����

for i�
�N

for j�
�i

s
�s
�	�f�i�j��

s	�s	�	�f�i�j��i�

s��s��	�f�i�j��j�

s��s��	�f�i�j��j�	�

s��s��	�f�i�j��i�	�

s��s��	�f�i�j��i�j�

end�

end�

�Here are the closed�from expressions from Maple

A� �����s
�N�	s
�N���s��N��s	�N�s����s��s���s�����N�		�N�	N���

��N�	N����N�

B� �������s	s����s�	�s
���s���s���N�����N���
��N�	��N
	N����N����

C� �������s	�N	�s��N���s
�N��s	���s��
��s���s����s
�N���
��N�	�s�

	��N�	�s	�s
�N�	
	�s��N�
��s��N��N�����N���
��N�	��N
	N����N����

D� �����	��N�	�s�
��N�	�s	
��s
�N�	�
	�s��N	��s��N�	�s	�N
��s
�N

�	��s��N
��s����s��
��s� ��s
��s	���s�����N�		�N�	N���

��N�	N����N�

E� ������N���s
	��N���s	�
	�s
�N����N�	�s	�	��s
�N�	�
��s��N�	

���N�	�s����s��N
��s	�N�		�s
�N����s��N
��s��N����s�

���s��
	�s
���N
���N��	�N�����N�	���N
	��N�

F� �
����	�s	�N���s��N	�s
�N���s	���s�s���s����s���N

�����N���
��N�	��N
	N����N����

for i�
�N

for j�
�i

g�i�j� � A�i�	  B�j�	  C�i  D�j  E  F�i�j�

g�j�i��g�i�j��

se�se��mask�i�j��z�i�j���	����N��N
���	��

end�

end�

disp�sprintf��Surface coefficients are �i �i �i �i �i �i�n�� A�B�C�D�E�F���

disp�sprintf��Surface error is �i�n�� se���

maskfit�g�
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Glossary of Medical Terms

���



���

Anaplasia A loss of di�erentiation of cells� and of their orientation to one another� A

characteristic of tumour cells�

Anaplastic Restoring a lost or absent part� Characterised by anaplasia or reversed

development�

Artifact Any arti	cial product� In histology or microscopy� any structure or feature

that has been introduced by processing a tissue�

Benign Not malignant� nor recurrent� favourable for recovery�

Cancer A cellular tumour� the natural course of which is fatal� Cancer cells� unlike

benign tumour cells� exhibit the properties of invasion and metastasis and are

highly anaplastic� Cancers are divided into the two broad categories of carcinoma

and sarcoma�

Carcinoma A malignant new growth made up of epithelial cells tending to in	ltrate

the surrounding tissues and giving rise to metastases�

Carcinoma in situ A neoplastic entity wherein the tumour cells still lie within the epi


thelium of origin� without invasion of the basement membrane� popularly applied

to such cells in the uterine cervix�

Cervical intraepithelial neoplasia �CIN� Dysplastic changes beginning at the squamo


columnar junction in the uterine cervix which may be precursors of squamous cell

carcinoma� grade �� mild dysplasia involving the lower one
third or less of the

epithelial thickness� grade �� moderate dysplasia with one
third to two
thirds in


volvement� grade �� severe dysplasia or carcinoma in situ� with two
thirds to full

thickness involvement�

Chromatin The more readily stainable portion of the cell nucleus� forming a network of

nuclear 	brils within the achromatin of a cell� It is a deoxyribonucleic acid DNA�

attached to a protein structure base and is the carrier of the genes in inheritance�

It occurs in two interchangeable states� euchromatin and heterochromatin� and

during cell division it coils and folds to form the chromosomes�

Cytology The study of cells� their origin� structure� function� and pathology�

Cytopathologist An expert in the study of cells in disease� a cellular pathologist�

Cytoplasm The protoplasm of a cell exclusive of that of the nucleus�



���

Dysplasia Abnormality of development� in pathology� alteration in size� shape� and

organisation of adult cells�

Dysplastic Marked by dysplasia�

Endocervical Pertaining to the interior of the cervix uteri�

Epithelium The inner mucous membrane of the uterus� the thickness and structure of

which vary with the phase of the menstrual cycle�

Epithelial Pertaining to or composed of epithelium�

Histology That department of anatomy which deals with the minute structure� com


position� and function of the tissues�

Hyperplasia The abnormal multiplication or increase in the number of normal cells in

normal arrangement in a tissue�

In Situ In the natural or normal place� con	ned to the site of origin without invasion

of neighbouring tissues�

Intermediate Placed between� intervening� resembling� in part� each of two extremes�

Invasion �� The attack or onset of a disease� �� The simple harmless entrance of

bacteria into the body or their deposition in the tissues� as distinguished from

infection�

Invasive Having the quality of invasiveness�

Leukocyte A white blood cell�

Malignant Tending to become progressively worse and to result in death� Having the

properties of anaplasia� invasion� and metastasis� said of tumours�

Metaplasia Abnormal transformation of an adult� fully di�erentiated tissue of one kind

into a di�erentiated tissue of another kind� an acquired condition� in contrast to

heteroplasia�

Metastases The transfer of disease from one organ or part to another not directly

connected with it� The capacity to metastasise is a characteristic of all malignant

tumours�

Neoplasia The formation of a neoplasm� i�e�� the progressive multiplication of cells

under conditions that would not elicit� or would cause cessation of� multiplication

of normal cells�



���

Neoplasm Any new or abnormal growth� speci	cally a new growth of tissue in which

the growth is uncontrolled and progressive� Malignant neoplasms are distinguished

from benign� in that the former show a greater degree of anaplasia and have the

properties of invasion and metastasis� Also called tumour�

Nucleus A cell nucleus� a spheroid body within a cell� consisting of a number of char


acteristic organelles visible with the optical microscope� a thin nuclear membrane�

a nucleolus or nucleoli� irregular granules of chromatin and linin� and di�use nuc


leoplasm�

Papanicolaou smear test� Pap smear test An exfoliative cytological staining pro


cedure for the detection and diagnosis of various conditions� particularly malignant

and pre
malignant conditions of the female genital tract cancer of the vagina�

cervix� and endometrium�� in which cells which have been desquamated from the

genital epithelium are obtained by smears� 	xed and stained� and examined under

the microscope for evidence of pathologic changes�

Papanicolaou�s stain A method of staining smears of various body secretions� from

the respiratory� digestive� or genitourinary tract� for the examination of exfoliated

cells� to detect the presence of a malignant process�

Parabasal Pertaining to or situated beside or against a base�

Pathology That branch of medicine which treats of the essential nature of disease�

especially of the structural and functional changes in tissues and organs of the

body which cause or are caused by disease�

Protoplasm The viscid� translucent� polyphasic colloid with water as the continuous

phase that makes up the essential material of all plant and animal cells� The pro


toplasm surrounding the nucleus is known as the cytoplasm� and that composing

the nucleus is the nucleoplasm�

Pyknosis A thickening or condensation� speci	cally� a condensation and reduction in

size of the cell or its nucleus� usually associated with hyperchromatosis� nuclear

pyknosis is a stage of necrosis�

Sarcoma A tumour made up of a substance like the embryonic connective tissue� tissue

composed of closely packed cells embedded in a 	brillar or homogeneous substance�

Sarcomas are often highly malignant�

Squamous Scaly� or plate
like�



���

Squamous cell carcinoma A malignant neoplasm derived from strati	ed squamous

epithelium� but which may also occur in sites� such as bronchial mucosa� where

glandular or columnar epithelium is normally present�

Stain Any dye� reagent� or other material used in producing colouration� such as a

substance used in colouring tissues or microorganisms for microscopical study�

Stoichiometric Relating to the proportions in which chemicals combine to form com


pounds and the weight relations in chemical reactions� A stoichiometric stain

produces a total optical density proportional to the DNA content�
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